环形扩散和蛋白质结构演化

Eduardo Garc'ia-Portugu'es, Michael Golden, Michael Sørensen, K. Mardia, T. Hamelryck, J. Hein
{"title":"环形扩散和蛋白质结构演化","authors":"Eduardo Garc'ia-Portugu'es, Michael Golden, Michael Sørensen, K. Mardia, T. Hamelryck, J. Hein","doi":"10.1201/9781315228570-12","DOIUrl":null,"url":null,"abstract":"This chapter shows how toroidal diffusions are convenient methodological tools for modelling protein evolution in a probabilistic framework. The chapter addresses the construction of ergodic diffusions with stationary distributions equal to well-known directional distributions, which can be regarded as toroidal analogues of the Ornstein-Uhlenbeck process. The important challenges that arise in the estimation of the diffusion parameters require the consideration of tractable approximate likelihoods and, among the several approaches introduced, the one yielding a specific approximation to the transition density of the wrapped normal process is shown to give the best empirical performance on average. This provides the methodological building block for Evolutionary Torus Dynamic Bayesian Network (ETDBN), a hidden Markov model for protein evolution that emits a wrapped normal process and two continuous-time Markov chains per hidden state. The chapter describes the main features of ETDBN, which allows for both \"smooth\" conformational changes and \"catastrophic\" conformational jumps, and several empirical benchmarks. The insights into the relationship between sequence and structure evolution that ETDBN provides are illustrated in a case study.","PeriodicalId":395278,"journal":{"name":"Applied Directional Statistics","volume":"2014 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Toroidal Diffusions and Protein Structure Evolution\",\"authors\":\"Eduardo Garc'ia-Portugu'es, Michael Golden, Michael Sørensen, K. Mardia, T. Hamelryck, J. Hein\",\"doi\":\"10.1201/9781315228570-12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This chapter shows how toroidal diffusions are convenient methodological tools for modelling protein evolution in a probabilistic framework. The chapter addresses the construction of ergodic diffusions with stationary distributions equal to well-known directional distributions, which can be regarded as toroidal analogues of the Ornstein-Uhlenbeck process. The important challenges that arise in the estimation of the diffusion parameters require the consideration of tractable approximate likelihoods and, among the several approaches introduced, the one yielding a specific approximation to the transition density of the wrapped normal process is shown to give the best empirical performance on average. This provides the methodological building block for Evolutionary Torus Dynamic Bayesian Network (ETDBN), a hidden Markov model for protein evolution that emits a wrapped normal process and two continuous-time Markov chains per hidden state. The chapter describes the main features of ETDBN, which allows for both \\\"smooth\\\" conformational changes and \\\"catastrophic\\\" conformational jumps, and several empirical benchmarks. The insights into the relationship between sequence and structure evolution that ETDBN provides are illustrated in a case study.\",\"PeriodicalId\":395278,\"journal\":{\"name\":\"Applied Directional Statistics\",\"volume\":\"2014 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Directional Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1201/9781315228570-12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Directional Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1201/9781315228570-12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本章展示了环形扩散是如何在概率框架中模拟蛋白质进化的方便方法工具。本章讨论了与众所周知的定向分布相等的平稳分布的遍历扩散的构造,它可以被视为Ornstein-Uhlenbeck过程的环形类似物。在估计扩散参数时出现的重要挑战需要考虑可处理的近似可能性,并且在引入的几种方法中,对包裹正常过程的过渡密度产生特定近似值的方法显示出平均上最好的经验性能。这为进化环面动态贝叶斯网络(ETDBN)提供了方法构建块,ETDBN是蛋白质进化的隐藏马尔可夫模型,每个隐藏状态发出一个包裹的正常过程和两个连续时间马尔可夫链。本章描述了ETDBN的主要特征,它允许“平滑”构象变化和“灾难性”构象跳跃,以及几个经验基准。ETDBN提供的对序列和结构演化之间关系的见解在一个案例研究中得到说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Toroidal Diffusions and Protein Structure Evolution
This chapter shows how toroidal diffusions are convenient methodological tools for modelling protein evolution in a probabilistic framework. The chapter addresses the construction of ergodic diffusions with stationary distributions equal to well-known directional distributions, which can be regarded as toroidal analogues of the Ornstein-Uhlenbeck process. The important challenges that arise in the estimation of the diffusion parameters require the consideration of tractable approximate likelihoods and, among the several approaches introduced, the one yielding a specific approximation to the transition density of the wrapped normal process is shown to give the best empirical performance on average. This provides the methodological building block for Evolutionary Torus Dynamic Bayesian Network (ETDBN), a hidden Markov model for protein evolution that emits a wrapped normal process and two continuous-time Markov chains per hidden state. The chapter describes the main features of ETDBN, which allows for both "smooth" conformational changes and "catastrophic" conformational jumps, and several empirical benchmarks. The insights into the relationship between sequence and structure evolution that ETDBN provides are illustrated in a case study.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信