一种基于改进粒子群算法的智能出行路径推荐方法

Si Han
{"title":"一种基于改进粒子群算法的智能出行路径推荐方法","authors":"Si Han","doi":"10.1504/ijcsm.2020.10030828","DOIUrl":null,"url":null,"abstract":"In order to overcome the problem of increasing fluctuation of Intelligent Tourism data and fuzzy optimal solution, the improved particle swarm optimisation algorithm is introduced to design intelligent tourism path recommendation method. The gray Markov model is used to predict the number of tourist attractions, and the scoring mechanism of tourist attractions is constructed based on multiple perspectives. The constraints are the distance estimation, number prediction, scoring and user preference identification of tourist attractions. The improved particle swarm optimisation algorithm is used to find the optimal solution of recommendation and recommend the tourist path for users. The experimental results show that the average absolute error value of the proposed intelligent travel path recommendation method is 8.13, the inverse relationship between the accuracy and recall rate is clear, and it has better recommendation effect.","PeriodicalId":399731,"journal":{"name":"Int. J. Comput. Sci. Math.","volume":"86 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A new intelligent method for travel path recommendation based on improved particle swarm optimisation\",\"authors\":\"Si Han\",\"doi\":\"10.1504/ijcsm.2020.10030828\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to overcome the problem of increasing fluctuation of Intelligent Tourism data and fuzzy optimal solution, the improved particle swarm optimisation algorithm is introduced to design intelligent tourism path recommendation method. The gray Markov model is used to predict the number of tourist attractions, and the scoring mechanism of tourist attractions is constructed based on multiple perspectives. The constraints are the distance estimation, number prediction, scoring and user preference identification of tourist attractions. The improved particle swarm optimisation algorithm is used to find the optimal solution of recommendation and recommend the tourist path for users. The experimental results show that the average absolute error value of the proposed intelligent travel path recommendation method is 8.13, the inverse relationship between the accuracy and recall rate is clear, and it has better recommendation effect.\",\"PeriodicalId\":399731,\"journal\":{\"name\":\"Int. J. Comput. Sci. Math.\",\"volume\":\"86 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Comput. Sci. Math.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/ijcsm.2020.10030828\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Comput. Sci. Math.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijcsm.2020.10030828","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

为了克服智能旅游数据波动增大和最优解模糊的问题,引入改进粒子群算法设计智能旅游路径推荐方法。采用灰色马尔可夫模型对旅游景点数量进行预测,构建基于多角度的旅游景点评分机制。约束条件是旅游景点的距离估计、数量预测、评分和用户偏好识别。采用改进的粒子群算法寻找推荐的最优解,为用户推荐旅游路径。实验结果表明,本文提出的智能旅行路径推荐方法的平均绝对误差值为8.13,准确率与召回率呈明显的反比关系,具有较好的推荐效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new intelligent method for travel path recommendation based on improved particle swarm optimisation
In order to overcome the problem of increasing fluctuation of Intelligent Tourism data and fuzzy optimal solution, the improved particle swarm optimisation algorithm is introduced to design intelligent tourism path recommendation method. The gray Markov model is used to predict the number of tourist attractions, and the scoring mechanism of tourist attractions is constructed based on multiple perspectives. The constraints are the distance estimation, number prediction, scoring and user preference identification of tourist attractions. The improved particle swarm optimisation algorithm is used to find the optimal solution of recommendation and recommend the tourist path for users. The experimental results show that the average absolute error value of the proposed intelligent travel path recommendation method is 8.13, the inverse relationship between the accuracy and recall rate is clear, and it has better recommendation effect.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信