H-Free图的几种诱导不相交路径

B. Martin, D. Paulusma, Siani Smith, E. J. V. Leeuwen
{"title":"H-Free图的几种诱导不相交路径","authors":"B. Martin, D. Paulusma, Siani Smith, E. J. V. Leeuwen","doi":"10.48550/arXiv.2203.03319","DOIUrl":null,"url":null,"abstract":"Paths $P^1,\\ldots,P^k$ in a graph $G=(V,E)$ are mutually induced if any two distinct $P^i$ and $P^j$ have neither common vertices nor adjacent vertices. For a fixed integer $k$, the $k$-Induced Disjoint Paths problem is to decide if a graph $G$ with $k$ pairs of specified vertices $(s_i,t_i)$ contains $k$ mutually induced paths $P^i$ such that each $P^i$ starts from $s_i$ and ends at $t_i$. Whereas the non-induced version is well-known to be polynomial-time solvable for every fixed integer $k$, a classical result from the literature states that even $2$-Induced Disjoint Paths is NP-complete. We prove new complexity results for $k$-Induced Disjoint Paths if the input is restricted to $H$-free graphs, that is, graphs without a fixed graph $H$ as an induced subgraph. We compare our results with a complexity dichotomy for Induced Disjoint Paths, the variant where $k$ is part of the input.","PeriodicalId":307867,"journal":{"name":"International Symposium on Combinatorial Optimization","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Few Induced Disjoint Paths for H-Free Graphs\",\"authors\":\"B. Martin, D. Paulusma, Siani Smith, E. J. V. Leeuwen\",\"doi\":\"10.48550/arXiv.2203.03319\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Paths $P^1,\\\\ldots,P^k$ in a graph $G=(V,E)$ are mutually induced if any two distinct $P^i$ and $P^j$ have neither common vertices nor adjacent vertices. For a fixed integer $k$, the $k$-Induced Disjoint Paths problem is to decide if a graph $G$ with $k$ pairs of specified vertices $(s_i,t_i)$ contains $k$ mutually induced paths $P^i$ such that each $P^i$ starts from $s_i$ and ends at $t_i$. Whereas the non-induced version is well-known to be polynomial-time solvable for every fixed integer $k$, a classical result from the literature states that even $2$-Induced Disjoint Paths is NP-complete. We prove new complexity results for $k$-Induced Disjoint Paths if the input is restricted to $H$-free graphs, that is, graphs without a fixed graph $H$ as an induced subgraph. We compare our results with a complexity dichotomy for Induced Disjoint Paths, the variant where $k$ is part of the input.\",\"PeriodicalId\":307867,\"journal\":{\"name\":\"International Symposium on Combinatorial Optimization\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Combinatorial Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2203.03319\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Combinatorial Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2203.03319","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

图$G=(V,E)$中的路径$P^1, $ ldots, $P^ k$是相互诱导的,如果任意两个不同的$P^i$和$P^j$既没有公共顶点也没有相邻顶点。对于一个固定的整数$k$, $k$诱导不相交路径问题是决定一个具有$k$对指定顶点$(s_i,t_i)$的图$G$是否包含$k$互诱导路径$P^i$,使得每个$P^i$从$s_i$开始到$t_i$结束。众所周知,对于每一个固定的整数$k$,非诱导的版本都是多项式时间可解的,而文献中的一个经典结果表明,即使$2$诱导的不相交路径也是np完全的。如果输入限制为$H$自由图,即没有固定图$H$作为诱导子图的图,我们证明了$k$诱导不相交路径的新的复杂度结果。我们将我们的结果与诱导不相交路径的复杂性二分法进行比较,其中k$是输入的一部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Few Induced Disjoint Paths for H-Free Graphs
Paths $P^1,\ldots,P^k$ in a graph $G=(V,E)$ are mutually induced if any two distinct $P^i$ and $P^j$ have neither common vertices nor adjacent vertices. For a fixed integer $k$, the $k$-Induced Disjoint Paths problem is to decide if a graph $G$ with $k$ pairs of specified vertices $(s_i,t_i)$ contains $k$ mutually induced paths $P^i$ such that each $P^i$ starts from $s_i$ and ends at $t_i$. Whereas the non-induced version is well-known to be polynomial-time solvable for every fixed integer $k$, a classical result from the literature states that even $2$-Induced Disjoint Paths is NP-complete. We prove new complexity results for $k$-Induced Disjoint Paths if the input is restricted to $H$-free graphs, that is, graphs without a fixed graph $H$ as an induced subgraph. We compare our results with a complexity dichotomy for Induced Disjoint Paths, the variant where $k$ is part of the input.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信