B. Martin, D. Paulusma, Siani Smith, E. J. V. Leeuwen
{"title":"H-Free图的几种诱导不相交路径","authors":"B. Martin, D. Paulusma, Siani Smith, E. J. V. Leeuwen","doi":"10.48550/arXiv.2203.03319","DOIUrl":null,"url":null,"abstract":"Paths $P^1,\\ldots,P^k$ in a graph $G=(V,E)$ are mutually induced if any two distinct $P^i$ and $P^j$ have neither common vertices nor adjacent vertices. For a fixed integer $k$, the $k$-Induced Disjoint Paths problem is to decide if a graph $G$ with $k$ pairs of specified vertices $(s_i,t_i)$ contains $k$ mutually induced paths $P^i$ such that each $P^i$ starts from $s_i$ and ends at $t_i$. Whereas the non-induced version is well-known to be polynomial-time solvable for every fixed integer $k$, a classical result from the literature states that even $2$-Induced Disjoint Paths is NP-complete. We prove new complexity results for $k$-Induced Disjoint Paths if the input is restricted to $H$-free graphs, that is, graphs without a fixed graph $H$ as an induced subgraph. We compare our results with a complexity dichotomy for Induced Disjoint Paths, the variant where $k$ is part of the input.","PeriodicalId":307867,"journal":{"name":"International Symposium on Combinatorial Optimization","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Few Induced Disjoint Paths for H-Free Graphs\",\"authors\":\"B. Martin, D. Paulusma, Siani Smith, E. J. V. Leeuwen\",\"doi\":\"10.48550/arXiv.2203.03319\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Paths $P^1,\\\\ldots,P^k$ in a graph $G=(V,E)$ are mutually induced if any two distinct $P^i$ and $P^j$ have neither common vertices nor adjacent vertices. For a fixed integer $k$, the $k$-Induced Disjoint Paths problem is to decide if a graph $G$ with $k$ pairs of specified vertices $(s_i,t_i)$ contains $k$ mutually induced paths $P^i$ such that each $P^i$ starts from $s_i$ and ends at $t_i$. Whereas the non-induced version is well-known to be polynomial-time solvable for every fixed integer $k$, a classical result from the literature states that even $2$-Induced Disjoint Paths is NP-complete. We prove new complexity results for $k$-Induced Disjoint Paths if the input is restricted to $H$-free graphs, that is, graphs without a fixed graph $H$ as an induced subgraph. We compare our results with a complexity dichotomy for Induced Disjoint Paths, the variant where $k$ is part of the input.\",\"PeriodicalId\":307867,\"journal\":{\"name\":\"International Symposium on Combinatorial Optimization\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Combinatorial Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2203.03319\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Combinatorial Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2203.03319","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Paths $P^1,\ldots,P^k$ in a graph $G=(V,E)$ are mutually induced if any two distinct $P^i$ and $P^j$ have neither common vertices nor adjacent vertices. For a fixed integer $k$, the $k$-Induced Disjoint Paths problem is to decide if a graph $G$ with $k$ pairs of specified vertices $(s_i,t_i)$ contains $k$ mutually induced paths $P^i$ such that each $P^i$ starts from $s_i$ and ends at $t_i$. Whereas the non-induced version is well-known to be polynomial-time solvable for every fixed integer $k$, a classical result from the literature states that even $2$-Induced Disjoint Paths is NP-complete. We prove new complexity results for $k$-Induced Disjoint Paths if the input is restricted to $H$-free graphs, that is, graphs without a fixed graph $H$ as an induced subgraph. We compare our results with a complexity dichotomy for Induced Disjoint Paths, the variant where $k$ is part of the input.