基于变长马尔可夫模型的实时三维人体跟踪

Fabrice Caillette, Aphrodite Galata, T. Howard
{"title":"基于变长马尔可夫模型的实时三维人体跟踪","authors":"Fabrice Caillette, Aphrodite Galata, T. Howard","doi":"10.5244/C.19.49","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce a 3-D human-body tracker capable of handling fast and complex motions in real-time. The parameter space, augmented with first order derivatives, is automatically partitioned into Gaussian clusters each representing an elementary motion: hypothesis propagation inside each cluster is therefore accurate and efficient. The transitions between clusters use the predictions of a Variable Length Markov Model which can explain highlevel behaviours over a long history. Using Monte-Carlo methods, evaluation of model candidates is critical for both speed and robustness. We present a new evaluation scheme based on volumetric reconstruction and blobs-fitting, where appearance models and image evidences are represented by Gaussian mixtures. We demonstrate the application of our tracker to long video sequences exhibiting rapid and diverse movements.","PeriodicalId":196845,"journal":{"name":"Procedings of the British Machine Vision Conference 2005","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"48","resultStr":"{\"title\":\"Real-Time 3-D Human Body Tracking using Variable Length Markov Models\",\"authors\":\"Fabrice Caillette, Aphrodite Galata, T. Howard\",\"doi\":\"10.5244/C.19.49\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we introduce a 3-D human-body tracker capable of handling fast and complex motions in real-time. The parameter space, augmented with first order derivatives, is automatically partitioned into Gaussian clusters each representing an elementary motion: hypothesis propagation inside each cluster is therefore accurate and efficient. The transitions between clusters use the predictions of a Variable Length Markov Model which can explain highlevel behaviours over a long history. Using Monte-Carlo methods, evaluation of model candidates is critical for both speed and robustness. We present a new evaluation scheme based on volumetric reconstruction and blobs-fitting, where appearance models and image evidences are represented by Gaussian mixtures. We demonstrate the application of our tracker to long video sequences exhibiting rapid and diverse movements.\",\"PeriodicalId\":196845,\"journal\":{\"name\":\"Procedings of the British Machine Vision Conference 2005\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"48\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Procedings of the British Machine Vision Conference 2005\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5244/C.19.49\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Procedings of the British Machine Vision Conference 2005","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5244/C.19.49","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 48

摘要

本文介绍了一种能够实时处理快速复杂运动的三维人体跟踪器。参数空间,增广了一阶导数,被自动划分为高斯簇,每个簇代表一个基本运动:因此,每个簇内的假设传播是准确和有效的。集群之间的转换使用可变长度马尔可夫模型的预测,该模型可以解释长期历史上的高级行为。使用蒙特卡罗方法,候选模型的评估对于速度和鲁棒性都是至关重要的。我们提出了一种基于体积重建和斑点拟合的新评估方案,其中外观模型和图像证据用高斯混合表示。我们演示了我们的跟踪器的应用,以长视频序列显示快速和多样的运动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Real-Time 3-D Human Body Tracking using Variable Length Markov Models
In this paper, we introduce a 3-D human-body tracker capable of handling fast and complex motions in real-time. The parameter space, augmented with first order derivatives, is automatically partitioned into Gaussian clusters each representing an elementary motion: hypothesis propagation inside each cluster is therefore accurate and efficient. The transitions between clusters use the predictions of a Variable Length Markov Model which can explain highlevel behaviours over a long history. Using Monte-Carlo methods, evaluation of model candidates is critical for both speed and robustness. We present a new evaluation scheme based on volumetric reconstruction and blobs-fitting, where appearance models and image evidences are represented by Gaussian mixtures. We demonstrate the application of our tracker to long video sequences exhibiting rapid and diverse movements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信