{"title":"迈向量子软件建模语言","authors":"Carlos A. Pérez-Delgado, H. G. Pérez-González","doi":"10.1145/3387940.3392183","DOIUrl":null,"url":null,"abstract":"We set down the principles behind a modeling language for quantum software. We present a minimal set of extensions to the well-known Unified Modeling Language (UML) that allows it to effectively model quantum software. These extensions are separate and independent of UML as a whole. As such they can be used to extend any other software modeling language, or as a basis for a completely new language. We argue that these extensions are both necessary and sufficient to model, abstractly, any piece of quantum software. Finally, we provide a small set of examples that showcase the effectiveness of the extension set.","PeriodicalId":309659,"journal":{"name":"Proceedings of the IEEE/ACM 42nd International Conference on Software Engineering Workshops","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":"{\"title\":\"Towards a Quantum Software Modeling Language\",\"authors\":\"Carlos A. Pérez-Delgado, H. G. Pérez-González\",\"doi\":\"10.1145/3387940.3392183\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We set down the principles behind a modeling language for quantum software. We present a minimal set of extensions to the well-known Unified Modeling Language (UML) that allows it to effectively model quantum software. These extensions are separate and independent of UML as a whole. As such they can be used to extend any other software modeling language, or as a basis for a completely new language. We argue that these extensions are both necessary and sufficient to model, abstractly, any piece of quantum software. Finally, we provide a small set of examples that showcase the effectiveness of the extension set.\",\"PeriodicalId\":309659,\"journal\":{\"name\":\"Proceedings of the IEEE/ACM 42nd International Conference on Software Engineering Workshops\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"38\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the IEEE/ACM 42nd International Conference on Software Engineering Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3387940.3392183\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE/ACM 42nd International Conference on Software Engineering Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3387940.3392183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We set down the principles behind a modeling language for quantum software. We present a minimal set of extensions to the well-known Unified Modeling Language (UML) that allows it to effectively model quantum software. These extensions are separate and independent of UML as a whole. As such they can be used to extend any other software modeling language, or as a basis for a completely new language. We argue that these extensions are both necessary and sufficient to model, abstractly, any piece of quantum software. Finally, we provide a small set of examples that showcase the effectiveness of the extension set.