{"title":"变形恶意软件检测的判别特征","authors":"Jikku Kuriakose, P. Vinod","doi":"10.1109/IC3.2014.6897208","DOIUrl":null,"url":null,"abstract":"To unfold a solution for the detection of metamorphic viruses (obfuscated malware), we propose a non signature based approach using feature selection techniques such as Categorical Proportional Difference (CPD), Weight of Evidence of Text (WET), Term Frequency-Inverse Document Frequency (TF-IDF) and Term Frequency-Inverse Document Frequency-Class Frequency (TF-IDF-CF). Feature selection methods are employed to rank and prune bi-gram features obtained from malware and benign files. Synthesized features are further evaluated for their prominence in either of the classes. Using our proposed methodology 100% accuracy is obtained with test samples. Hence, we argue that the statistical scanner proposed by us can identify future metamorphic variants and can assist antiviruses with high accuracy.","PeriodicalId":444918,"journal":{"name":"2014 Seventh International Conference on Contemporary Computing (IC3)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Discriminant features for metamorphic malware detection\",\"authors\":\"Jikku Kuriakose, P. Vinod\",\"doi\":\"10.1109/IC3.2014.6897208\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To unfold a solution for the detection of metamorphic viruses (obfuscated malware), we propose a non signature based approach using feature selection techniques such as Categorical Proportional Difference (CPD), Weight of Evidence of Text (WET), Term Frequency-Inverse Document Frequency (TF-IDF) and Term Frequency-Inverse Document Frequency-Class Frequency (TF-IDF-CF). Feature selection methods are employed to rank and prune bi-gram features obtained from malware and benign files. Synthesized features are further evaluated for their prominence in either of the classes. Using our proposed methodology 100% accuracy is obtained with test samples. Hence, we argue that the statistical scanner proposed by us can identify future metamorphic variants and can assist antiviruses with high accuracy.\",\"PeriodicalId\":444918,\"journal\":{\"name\":\"2014 Seventh International Conference on Contemporary Computing (IC3)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 Seventh International Conference on Contemporary Computing (IC3)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IC3.2014.6897208\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Seventh International Conference on Contemporary Computing (IC3)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IC3.2014.6897208","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Discriminant features for metamorphic malware detection
To unfold a solution for the detection of metamorphic viruses (obfuscated malware), we propose a non signature based approach using feature selection techniques such as Categorical Proportional Difference (CPD), Weight of Evidence of Text (WET), Term Frequency-Inverse Document Frequency (TF-IDF) and Term Frequency-Inverse Document Frequency-Class Frequency (TF-IDF-CF). Feature selection methods are employed to rank and prune bi-gram features obtained from malware and benign files. Synthesized features are further evaluated for their prominence in either of the classes. Using our proposed methodology 100% accuracy is obtained with test samples. Hence, we argue that the statistical scanner proposed by us can identify future metamorphic variants and can assist antiviruses with high accuracy.