平衡和不平衡乘法的高阶二分之一

Marco Bodrato
{"title":"平衡和不平衡乘法的高阶二分之一","authors":"Marco Bodrato","doi":"10.1109/ARITH.2011.12","DOIUrl":null,"url":null,"abstract":"Some hints and tricks to automatically obtain high degree Toom-Cook implementations, i.e. functions for integer or polynomial multiplication with a reduced complexity. The described method generates quite an efficient sequence of operations and the memory footprint is kept low by using a new strategy: mixing evaluation, interpolation and recomposition phases. It is possible to automatise the whole procedure obtaining a general Toom-n function, and to extend the method to polynomials in any characteristic except two.","PeriodicalId":272151,"journal":{"name":"2011 IEEE 20th Symposium on Computer Arithmetic","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"High Degree Toom'n'Half for Balanced and Unbalanced Multiplication\",\"authors\":\"Marco Bodrato\",\"doi\":\"10.1109/ARITH.2011.12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Some hints and tricks to automatically obtain high degree Toom-Cook implementations, i.e. functions for integer or polynomial multiplication with a reduced complexity. The described method generates quite an efficient sequence of operations and the memory footprint is kept low by using a new strategy: mixing evaluation, interpolation and recomposition phases. It is possible to automatise the whole procedure obtaining a general Toom-n function, and to extend the method to polynomials in any characteristic except two.\",\"PeriodicalId\":272151,\"journal\":{\"name\":\"2011 IEEE 20th Symposium on Computer Arithmetic\",\"volume\":\"67 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE 20th Symposium on Computer Arithmetic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ARITH.2011.12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 20th Symposium on Computer Arithmetic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ARITH.2011.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

一些提示和技巧,自动获得高程度的Toom-Cook实现,即整数或多项式乘法的函数与降低复杂性。所描述的方法产生了相当高效的操作序列,并且使用了一种新的策略:混合计算,插值和重组阶段,从而保持了较低的内存占用。这是可能的自动化整个过程,以获得一般的托姆-n函数,并将该方法扩展到多项式的任何特征,除了两个。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High Degree Toom'n'Half for Balanced and Unbalanced Multiplication
Some hints and tricks to automatically obtain high degree Toom-Cook implementations, i.e. functions for integer or polynomial multiplication with a reduced complexity. The described method generates quite an efficient sequence of operations and the memory footprint is kept low by using a new strategy: mixing evaluation, interpolation and recomposition phases. It is possible to automatise the whole procedure obtaining a general Toom-n function, and to extend the method to polynomials in any characteristic except two.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信