{"title":"常压等离子体射流和液相等离子体处理变质切削液的质量改善","authors":"J. Miyamoto, R. Tsuboi, Masashi Yoshida, K. Nambu","doi":"10.1299/mel.20-00100","DOIUrl":null,"url":null,"abstract":"Friction between a tool and chip, and the heat generated, often limit machining in metal cutting operations. Coolants and lubricants are used in great quantities to reduce friction at the cutting area. However, the cost of cutting fluids is increasing because of the increasingly stringent environmental standards for fluid handling and disposal, and these standards are likely to be further tightened in proposed national and international legislation (Weinert and Inasaki, 2004). Although dry and semi-dry machining is an attractive option, it is currently unavailable in many operations because cooling cannot be achieved (Tasdelen et al., 2008; Werda et al., 2016). Therefore, cutting fluids will continue to be required. As a fluid deteriorates, its cutting power decreases and the work environment becomes polluted. Techniques that extend the life of cutting fluids are therefore needed. One of the key causes of deterioration is decomposition due to bacterial growth (Rabenstein et al., 2009; Griffiths, 1978). Bacteria enter the fluid from both the air and the chip. Because preventing bacteria from contaminating the cutting fluid is difficult, chemical additives are widely used for bacterial control. The widespread use of oil additives has led to the emergence of resistant bacteria, and the additives change the characteristics of the cutting fluid. Therefore, we proposed a sterilization technique using plasma treatment under atmospheric pressure (Miyamoto et al., 2018). Moreover, we suggested that the molecular structure of the fluids was not affected by plasma jet treatment (Miyamoto et al., 2018). In our previous study, the number of bacterial colonies in fluid sterilized using atmospheric-pressure plasma was reduced by more than 90% compared with the number in an untreated fluid (Miyamoto et al., 2018). From this report, however, it is unclear whether the remaining bacteria and surface Junji MIYAMOTO*, Ryo TSUBOI*, Masashi YOSHIDA** and Koichiro NAMBU*** * Department of Mechanical Engineering, Daido University 10-3 Takiharu-cho, Minami-ku, Nagoya, Aichi 457-8530, Japan E-mail: j-miya@daido-it.ac.jp ** Department of Mechanical Systems Engineering, Daido University 10-3 Takiharu-cho, Minami-ku, Nagoya, Aichi 457-8530, Japan *** Toyota Technological Institute 2-12-1 Hisakata Tenpaku-ku, Nagoya, Japan","PeriodicalId":180561,"journal":{"name":"Mechanical Engineering Letters","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quality improvement of deteriorated cutting fluid treated by atmospheric-pressure plasma jet and in-liquid plasma\",\"authors\":\"J. Miyamoto, R. Tsuboi, Masashi Yoshida, K. Nambu\",\"doi\":\"10.1299/mel.20-00100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Friction between a tool and chip, and the heat generated, often limit machining in metal cutting operations. Coolants and lubricants are used in great quantities to reduce friction at the cutting area. However, the cost of cutting fluids is increasing because of the increasingly stringent environmental standards for fluid handling and disposal, and these standards are likely to be further tightened in proposed national and international legislation (Weinert and Inasaki, 2004). Although dry and semi-dry machining is an attractive option, it is currently unavailable in many operations because cooling cannot be achieved (Tasdelen et al., 2008; Werda et al., 2016). Therefore, cutting fluids will continue to be required. As a fluid deteriorates, its cutting power decreases and the work environment becomes polluted. Techniques that extend the life of cutting fluids are therefore needed. One of the key causes of deterioration is decomposition due to bacterial growth (Rabenstein et al., 2009; Griffiths, 1978). Bacteria enter the fluid from both the air and the chip. Because preventing bacteria from contaminating the cutting fluid is difficult, chemical additives are widely used for bacterial control. The widespread use of oil additives has led to the emergence of resistant bacteria, and the additives change the characteristics of the cutting fluid. Therefore, we proposed a sterilization technique using plasma treatment under atmospheric pressure (Miyamoto et al., 2018). Moreover, we suggested that the molecular structure of the fluids was not affected by plasma jet treatment (Miyamoto et al., 2018). In our previous study, the number of bacterial colonies in fluid sterilized using atmospheric-pressure plasma was reduced by more than 90% compared with the number in an untreated fluid (Miyamoto et al., 2018). From this report, however, it is unclear whether the remaining bacteria and surface Junji MIYAMOTO*, Ryo TSUBOI*, Masashi YOSHIDA** and Koichiro NAMBU*** * Department of Mechanical Engineering, Daido University 10-3 Takiharu-cho, Minami-ku, Nagoya, Aichi 457-8530, Japan E-mail: j-miya@daido-it.ac.jp ** Department of Mechanical Systems Engineering, Daido University 10-3 Takiharu-cho, Minami-ku, Nagoya, Aichi 457-8530, Japan *** Toyota Technological Institute 2-12-1 Hisakata Tenpaku-ku, Nagoya, Japan\",\"PeriodicalId\":180561,\"journal\":{\"name\":\"Mechanical Engineering Letters\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanical Engineering Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1299/mel.20-00100\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanical Engineering Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1299/mel.20-00100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
刀具和切屑之间的摩擦以及产生的热量常常限制金属切削加工。大量使用冷却剂和润滑剂来减少切割区域的摩擦。然而,由于流体处理和处置的环境标准日益严格,切削液的成本正在增加,拟议的国家和国际立法可能会进一步收紧这些标准(Weinert和Inasaki, 2004年)。尽管干式和半干式加工是一种有吸引力的选择,但由于无法实现冷却,目前在许多操作中无法使用(Tasdelen等人,2008;Werda et al., 2016)。因此,将继续需要切削液。当流体变质时,其切削功率降低,工作环境受到污染。因此,需要延长切削液使用寿命的技术。变质的关键原因之一是细菌生长导致的分解(Rabenstein et al., 2009;格里菲思,1978)。细菌通过空气和芯片进入液体。由于防止细菌污染切削液是困难的,化学添加剂被广泛用于细菌控制。油品添加剂的广泛使用导致耐药菌的出现,添加剂改变了切削液的特性。因此,我们提出了一种在常压下使用等离子体处理的灭菌技术(Miyamoto et al., 2018)。此外,我们认为等离子体射流处理不会影响流体的分子结构(Miyamoto et al., 2018)。在我们之前的研究中,与未经处理的液体相比,使用常压等离子体消毒的液体中的细菌菌落数量减少了90%以上(Miyamoto等人,2018)。然而,从这份报告中,尚不清楚是否剩余的细菌和表面MIYAMOTO Junji *, Ryo TSUBOI*, YOSHIDA Masashi **和Koichiro NAMBU*** * Daido大学机械工程系10-3 Takiharu-cho,南南区,名古屋,爱知县457-8530,日本j-miya@daido-it.ac.jp **日本爱知县名古屋南区泷春町10-3号大道大学机械系统工程系***日本名古屋久田天paku区丰田技术研究所2-12-1
Quality improvement of deteriorated cutting fluid treated by atmospheric-pressure plasma jet and in-liquid plasma
Friction between a tool and chip, and the heat generated, often limit machining in metal cutting operations. Coolants and lubricants are used in great quantities to reduce friction at the cutting area. However, the cost of cutting fluids is increasing because of the increasingly stringent environmental standards for fluid handling and disposal, and these standards are likely to be further tightened in proposed national and international legislation (Weinert and Inasaki, 2004). Although dry and semi-dry machining is an attractive option, it is currently unavailable in many operations because cooling cannot be achieved (Tasdelen et al., 2008; Werda et al., 2016). Therefore, cutting fluids will continue to be required. As a fluid deteriorates, its cutting power decreases and the work environment becomes polluted. Techniques that extend the life of cutting fluids are therefore needed. One of the key causes of deterioration is decomposition due to bacterial growth (Rabenstein et al., 2009; Griffiths, 1978). Bacteria enter the fluid from both the air and the chip. Because preventing bacteria from contaminating the cutting fluid is difficult, chemical additives are widely used for bacterial control. The widespread use of oil additives has led to the emergence of resistant bacteria, and the additives change the characteristics of the cutting fluid. Therefore, we proposed a sterilization technique using plasma treatment under atmospheric pressure (Miyamoto et al., 2018). Moreover, we suggested that the molecular structure of the fluids was not affected by plasma jet treatment (Miyamoto et al., 2018). In our previous study, the number of bacterial colonies in fluid sterilized using atmospheric-pressure plasma was reduced by more than 90% compared with the number in an untreated fluid (Miyamoto et al., 2018). From this report, however, it is unclear whether the remaining bacteria and surface Junji MIYAMOTO*, Ryo TSUBOI*, Masashi YOSHIDA** and Koichiro NAMBU*** * Department of Mechanical Engineering, Daido University 10-3 Takiharu-cho, Minami-ku, Nagoya, Aichi 457-8530, Japan E-mail: j-miya@daido-it.ac.jp ** Department of Mechanical Systems Engineering, Daido University 10-3 Takiharu-cho, Minami-ku, Nagoya, Aichi 457-8530, Japan *** Toyota Technological Institute 2-12-1 Hisakata Tenpaku-ku, Nagoya, Japan