多核硬件上多软件包单侧分解的比较研究

E. Agullo, B. Hadri, H. Ltaief, J. Dongarra
{"title":"多核硬件上多软件包单侧分解的比较研究","authors":"E. Agullo, B. Hadri, H. Ltaief, J. Dongarra","doi":"10.1145/1654059.1654080","DOIUrl":null,"url":null,"abstract":"The emergence and continuing use of multi-core architectures require changes in the existing software and sometimes even a redesign of the established algorithms in order to take advantage of now prevailing parallelism. The Parallel Linear Algebra for Scalable Multi-core Architectures (PLASMA) is a project that aims to achieve both high performance and portability across a wide range of multi-core architectures. We present in this paper a comparative study of PLASMA's performance against established linear algebra packages (LAPACK and ScaLAPACK), against new approaches at parallel execution (Task Based Linear Algebra Subroutines - TBLAS), and against equivalent commercial software offerings (MKL, ESSL and PESSL). Our experiments were conducted on one-sided linear algebra factorizations (LU, QR and Cholesky) and used multi-core architectures (based on Intel Xeon EMT64 and IBM Power6). A performance improvement of 67% was for instance obtained on the Cholesky factorization of a matrix of order 4000, using 32 cores.","PeriodicalId":371415,"journal":{"name":"Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"84","resultStr":"{\"title\":\"Comparative study of one-sided factorizations with multiple software packages on multi-core hardware\",\"authors\":\"E. Agullo, B. Hadri, H. Ltaief, J. Dongarra\",\"doi\":\"10.1145/1654059.1654080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The emergence and continuing use of multi-core architectures require changes in the existing software and sometimes even a redesign of the established algorithms in order to take advantage of now prevailing parallelism. The Parallel Linear Algebra for Scalable Multi-core Architectures (PLASMA) is a project that aims to achieve both high performance and portability across a wide range of multi-core architectures. We present in this paper a comparative study of PLASMA's performance against established linear algebra packages (LAPACK and ScaLAPACK), against new approaches at parallel execution (Task Based Linear Algebra Subroutines - TBLAS), and against equivalent commercial software offerings (MKL, ESSL and PESSL). Our experiments were conducted on one-sided linear algebra factorizations (LU, QR and Cholesky) and used multi-core architectures (based on Intel Xeon EMT64 and IBM Power6). A performance improvement of 67% was for instance obtained on the Cholesky factorization of a matrix of order 4000, using 32 cores.\",\"PeriodicalId\":371415,\"journal\":{\"name\":\"Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"84\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1654059.1654080\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1654059.1654080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 84

摘要

多核架构的出现和持续使用需要对现有软件进行更改,有时甚至需要重新设计已建立的算法,以便利用现在流行的并行性。面向可扩展多核体系结构的并行线性代数(PLASMA)是一个旨在在广泛的多核体系结构中实现高性能和可移植性的项目。在本文中,我们对等离子体的性能与已建立的线性代数包(LAPACK和ScaLAPACK),与并行执行的新方法(基于任务的线性代数子程序- TBLAS)以及等效的商业软件产品(MKL, ESSL和PESSL)进行了比较研究。我们的实验是在单侧线性代数分解(LU, QR和Cholesky)上进行的,并使用多核架构(基于Intel Xeon EMT64和IBM Power6)。例如,在使用32个内核对4000阶矩阵进行Cholesky分解时,性能提高了67%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparative study of one-sided factorizations with multiple software packages on multi-core hardware
The emergence and continuing use of multi-core architectures require changes in the existing software and sometimes even a redesign of the established algorithms in order to take advantage of now prevailing parallelism. The Parallel Linear Algebra for Scalable Multi-core Architectures (PLASMA) is a project that aims to achieve both high performance and portability across a wide range of multi-core architectures. We present in this paper a comparative study of PLASMA's performance against established linear algebra packages (LAPACK and ScaLAPACK), against new approaches at parallel execution (Task Based Linear Algebra Subroutines - TBLAS), and against equivalent commercial software offerings (MKL, ESSL and PESSL). Our experiments were conducted on one-sided linear algebra factorizations (LU, QR and Cholesky) and used multi-core architectures (based on Intel Xeon EMT64 and IBM Power6). A performance improvement of 67% was for instance obtained on the Cholesky factorization of a matrix of order 4000, using 32 cores.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信