CAMShift跟踪算法的在线故障检测与校正

Ebrahim Emami, M. Fathy, Ehsan Kozegar
{"title":"CAMShift跟踪算法的在线故障检测与校正","authors":"Ebrahim Emami, M. Fathy, Ehsan Kozegar","doi":"10.1109/IRANIANMVIP.2013.6779974","DOIUrl":null,"url":null,"abstract":"Tracking failure is an inevitable problem in any object tracking algorithm. Online evaluation of a tracking algorithm to detect and correct failures is therefore an important task in any object tracking system. In this paper we propose an early tracking failure detection procedure for the Continuously Adaptive Mean-Shift(CAMShift) tracking algorithm. We also propose an algorithm to modify the tracker in order to correct the detected failures. CAMShift is a light-weight tracking algorithm first developed based on mean-shift to track human face as a component in a perceptual user interface, but it easily fails in tracking targets in more complex situations like surveillance applications. With our proposed failure detection and correction algorithm, CAMShift shows promising results in the test video sequences.","PeriodicalId":297204,"journal":{"name":"2013 8th Iranian Conference on Machine Vision and Image Processing (MVIP)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Online failure detection and correction for CAMShift tracking algorithm\",\"authors\":\"Ebrahim Emami, M. Fathy, Ehsan Kozegar\",\"doi\":\"10.1109/IRANIANMVIP.2013.6779974\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tracking failure is an inevitable problem in any object tracking algorithm. Online evaluation of a tracking algorithm to detect and correct failures is therefore an important task in any object tracking system. In this paper we propose an early tracking failure detection procedure for the Continuously Adaptive Mean-Shift(CAMShift) tracking algorithm. We also propose an algorithm to modify the tracker in order to correct the detected failures. CAMShift is a light-weight tracking algorithm first developed based on mean-shift to track human face as a component in a perceptual user interface, but it easily fails in tracking targets in more complex situations like surveillance applications. With our proposed failure detection and correction algorithm, CAMShift shows promising results in the test video sequences.\",\"PeriodicalId\":297204,\"journal\":{\"name\":\"2013 8th Iranian Conference on Machine Vision and Image Processing (MVIP)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 8th Iranian Conference on Machine Vision and Image Processing (MVIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRANIANMVIP.2013.6779974\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 8th Iranian Conference on Machine Vision and Image Processing (MVIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRANIANMVIP.2013.6779974","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

跟踪失败是任何目标跟踪算法中不可避免的问题。因此,在线评估跟踪算法以检测和纠正故障是任何目标跟踪系统中的一项重要任务。本文提出了一种连续自适应均值移位(CAMShift)跟踪算法的早期跟踪故障检测方法。我们还提出了一种修改跟踪器的算法,以纠正检测到的故障。CAMShift是一种轻量级的跟踪算法,最初是基于mean-shift来跟踪人脸,作为感知用户界面的一个组成部分,但在监视应用等更复杂的情况下,它很容易失败。利用我们提出的故障检测和校正算法,CAMShift在测试视频序列中显示出令人满意的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Online failure detection and correction for CAMShift tracking algorithm
Tracking failure is an inevitable problem in any object tracking algorithm. Online evaluation of a tracking algorithm to detect and correct failures is therefore an important task in any object tracking system. In this paper we propose an early tracking failure detection procedure for the Continuously Adaptive Mean-Shift(CAMShift) tracking algorithm. We also propose an algorithm to modify the tracker in order to correct the detected failures. CAMShift is a light-weight tracking algorithm first developed based on mean-shift to track human face as a component in a perceptual user interface, but it easily fails in tracking targets in more complex situations like surveillance applications. With our proposed failure detection and correction algorithm, CAMShift shows promising results in the test video sequences.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信