信息模式识别的自适应特征学习

Hong Liang
{"title":"信息模式识别的自适应特征学习","authors":"Hong Liang","doi":"10.1109/ICCGI.2007.11","DOIUrl":null,"url":null,"abstract":"Adaptive feature learning is an effective method to explore the mechanism of information pattern recognition in information flow. This paper integrates the progresses of expert learning and artificial intelligence to propose a few new learning algorithms for pattern recognition in information flow. For solving high order matrix computing problem, this paper proposes an orthogonal transformation algorithm. For solving frequency modulation (FM) pattern recognition problem, this paper proposes a differential algorithm. For solving unknown pattern recognition in large scale information flow problem, this paper proposes inverse convolution algorithm and probability spectrum algorithm. These feature learning algorithms can extract and recognize pattern fast, efficiently and explicitly, even patterns are complex, confused and incomplete.","PeriodicalId":102568,"journal":{"name":"2007 International Multi-Conference on Computing in the Global Information Technology (ICCGI'07)","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Adaptive Feature Learning for Information Pattern Recognition\",\"authors\":\"Hong Liang\",\"doi\":\"10.1109/ICCGI.2007.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Adaptive feature learning is an effective method to explore the mechanism of information pattern recognition in information flow. This paper integrates the progresses of expert learning and artificial intelligence to propose a few new learning algorithms for pattern recognition in information flow. For solving high order matrix computing problem, this paper proposes an orthogonal transformation algorithm. For solving frequency modulation (FM) pattern recognition problem, this paper proposes a differential algorithm. For solving unknown pattern recognition in large scale information flow problem, this paper proposes inverse convolution algorithm and probability spectrum algorithm. These feature learning algorithms can extract and recognize pattern fast, efficiently and explicitly, even patterns are complex, confused and incomplete.\",\"PeriodicalId\":102568,\"journal\":{\"name\":\"2007 International Multi-Conference on Computing in the Global Information Technology (ICCGI'07)\",\"volume\":\"69 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 International Multi-Conference on Computing in the Global Information Technology (ICCGI'07)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCGI.2007.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Multi-Conference on Computing in the Global Information Technology (ICCGI'07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCGI.2007.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

自适应特征学习是探索信息流中信息模式识别机制的有效方法。结合专家学习和人工智能的研究进展,提出了几种新的信息流模式识别学习算法。针对高阶矩阵计算问题,提出了一种正交变换算法。为了解决调频模式识别问题,本文提出了一种差分算法。针对大规模信息流问题中的未知模式识别问题,本文提出了反卷积算法和概率谱算法。这些特征学习算法可以快速、高效、明确地提取和识别模式,即使模式是复杂、混乱和不完整的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive Feature Learning for Information Pattern Recognition
Adaptive feature learning is an effective method to explore the mechanism of information pattern recognition in information flow. This paper integrates the progresses of expert learning and artificial intelligence to propose a few new learning algorithms for pattern recognition in information flow. For solving high order matrix computing problem, this paper proposes an orthogonal transformation algorithm. For solving frequency modulation (FM) pattern recognition problem, this paper proposes a differential algorithm. For solving unknown pattern recognition in large scale information flow problem, this paper proposes inverse convolution algorithm and probability spectrum algorithm. These feature learning algorithms can extract and recognize pattern fast, efficiently and explicitly, even patterns are complex, confused and incomplete.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信