Sakthivelnathan Nallainathan, A. Arefi, C. Lund, A. Mehrizi‐Sani, David Stephens
{"title":"考虑资源和设备可用性的富可再生微电网可靠性蒙特卡罗模拟","authors":"Sakthivelnathan Nallainathan, A. Arefi, C. Lund, A. Mehrizi‐Sani, David Stephens","doi":"10.1109/POWERCON48463.2020.9230577","DOIUrl":null,"url":null,"abstract":"This paper proposes a new reliability evaluation method for renewable energy (RE) rich microgrid (MG) systems using a holistic approach by modelling the availability of renewable resources such as solar irradiation and wind along with the equipment availability during each hour. Where an electric network relies heavily on renewable resources the availability of such resources will significantly affect the reliability of the whole system. In addition, energy storage systems (ESSs) impact the reliability of a microgrid. In this paper, the mean time to failure (MTTF) of a RE rich MG system is evaluated based on the MTTF of equipment for different levels of renewable energy generation and energy storage. The loss of load frequency (LOLF) in each hour due to equipment failure, due to resource unavailbalitly, and the system failure due to combined effects were counted in a simulation study of 25 years.","PeriodicalId":306418,"journal":{"name":"2020 IEEE International Conference on Power Systems Technology (POWERCON)","volume":"2006 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Reliability Evaluation of Renewable-Rich Microgrids Using Monte Carlo Simulation Considering Resource and Equipment Availability\",\"authors\":\"Sakthivelnathan Nallainathan, A. Arefi, C. Lund, A. Mehrizi‐Sani, David Stephens\",\"doi\":\"10.1109/POWERCON48463.2020.9230577\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a new reliability evaluation method for renewable energy (RE) rich microgrid (MG) systems using a holistic approach by modelling the availability of renewable resources such as solar irradiation and wind along with the equipment availability during each hour. Where an electric network relies heavily on renewable resources the availability of such resources will significantly affect the reliability of the whole system. In addition, energy storage systems (ESSs) impact the reliability of a microgrid. In this paper, the mean time to failure (MTTF) of a RE rich MG system is evaluated based on the MTTF of equipment for different levels of renewable energy generation and energy storage. The loss of load frequency (LOLF) in each hour due to equipment failure, due to resource unavailbalitly, and the system failure due to combined effects were counted in a simulation study of 25 years.\",\"PeriodicalId\":306418,\"journal\":{\"name\":\"2020 IEEE International Conference on Power Systems Technology (POWERCON)\",\"volume\":\"2006 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Power Systems Technology (POWERCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/POWERCON48463.2020.9230577\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Power Systems Technology (POWERCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/POWERCON48463.2020.9230577","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Reliability Evaluation of Renewable-Rich Microgrids Using Monte Carlo Simulation Considering Resource and Equipment Availability
This paper proposes a new reliability evaluation method for renewable energy (RE) rich microgrid (MG) systems using a holistic approach by modelling the availability of renewable resources such as solar irradiation and wind along with the equipment availability during each hour. Where an electric network relies heavily on renewable resources the availability of such resources will significantly affect the reliability of the whole system. In addition, energy storage systems (ESSs) impact the reliability of a microgrid. In this paper, the mean time to failure (MTTF) of a RE rich MG system is evaluated based on the MTTF of equipment for different levels of renewable energy generation and energy storage. The loss of load frequency (LOLF) in each hour due to equipment failure, due to resource unavailbalitly, and the system failure due to combined effects were counted in a simulation study of 25 years.