基于小波稀疏性和电视稀疏性的压缩感知MRI快速交替最小化方法

Yonggui Zhu, I. Chern
{"title":"基于小波稀疏性和电视稀疏性的压缩感知MRI快速交替最小化方法","authors":"Yonggui Zhu, I. Chern","doi":"10.1109/ICIG.2011.23","DOIUrl":null,"url":null,"abstract":"In this paper, we extend the alternating minimization algorithm proposed in [ Y. G. Zhu and X. L. Yang, Journal of Signal and Information Processing, 2 (2011), pp. 44-51] to compressive sensing MRI model with wavelet sparsity and total variation(TV) sparsity simultaneously. This extended approach can reconstruct the MR image from under-sampled k-space data, i.e., the partial Fourier data. We also give the convergence analysis of extended alternating minimization method. Some MR images are employed to test in the numerical experiments, and the results demonstrate that the alternating minimization method is very efficient in MRI reconstruction.","PeriodicalId":277974,"journal":{"name":"2011 Sixth International Conference on Image and Graphics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Fast Alternating Minimization Method for Compressive Sensing MRI under Wavelet Sparsity and TV Sparsity\",\"authors\":\"Yonggui Zhu, I. Chern\",\"doi\":\"10.1109/ICIG.2011.23\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we extend the alternating minimization algorithm proposed in [ Y. G. Zhu and X. L. Yang, Journal of Signal and Information Processing, 2 (2011), pp. 44-51] to compressive sensing MRI model with wavelet sparsity and total variation(TV) sparsity simultaneously. This extended approach can reconstruct the MR image from under-sampled k-space data, i.e., the partial Fourier data. We also give the convergence analysis of extended alternating minimization method. Some MR images are employed to test in the numerical experiments, and the results demonstrate that the alternating minimization method is very efficient in MRI reconstruction.\",\"PeriodicalId\":277974,\"journal\":{\"name\":\"2011 Sixth International Conference on Image and Graphics\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 Sixth International Conference on Image and Graphics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIG.2011.23\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Sixth International Conference on Image and Graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIG.2011.23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

在本文中,我们将[Y. G. Zhu and X. L. Yang, Journal of Signal and Information Processing, 2011, 2, pp. 44-51]中提出的交替最小化算法扩展到同时具有小波稀疏性和总变差(TV)稀疏性的压缩感知MRI模型。这种扩展的方法可以从欠采样的k空间数据,即部分傅里叶数据重建MR图像。并给出了扩展交替最小化方法的收敛性分析。利用部分核磁共振图像进行数值实验,结果表明交替极小化方法在核磁共振重建中是非常有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast Alternating Minimization Method for Compressive Sensing MRI under Wavelet Sparsity and TV Sparsity
In this paper, we extend the alternating minimization algorithm proposed in [ Y. G. Zhu and X. L. Yang, Journal of Signal and Information Processing, 2 (2011), pp. 44-51] to compressive sensing MRI model with wavelet sparsity and total variation(TV) sparsity simultaneously. This extended approach can reconstruct the MR image from under-sampled k-space data, i.e., the partial Fourier data. We also give the convergence analysis of extended alternating minimization method. Some MR images are employed to test in the numerical experiments, and the results demonstrate that the alternating minimization method is very efficient in MRI reconstruction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信