源代码中标记对易故障模块预测准确性的影响

O. Mizuno
{"title":"源代码中标记对易故障模块预测准确性的影响","authors":"O. Mizuno","doi":"10.1109/ICSEC.2013.6694761","DOIUrl":null,"url":null,"abstract":"In the software development, defects affect quality and cost in an adverse way. Therefore, various studies have been proposed defect prediction techniques. Most of current defect prediction approaches use past project data for building prediction models. That is, these approaches are difficult to apply new development projects without past data. In this study, we use 28 versions of 8 projects to conduct experiments using the fault-prone filtering technique. Fault-prone filtering is a method that predicts faults using tokens from source code modules. Since the classes of tokens have impact to the accuracy of fault-proneness, we conduct an experiment to find appropriate token sets for prediction. From the results of experiments, we found that using tokens extracted from all parts of modules is the best way to predict faults and using tokens extracted from code part of modules shows better precision.","PeriodicalId":191620,"journal":{"name":"2013 International Computer Science and Engineering Conference (ICSEC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"On effects of tokens in source code to accuracy of fault-prone module prediction\",\"authors\":\"O. Mizuno\",\"doi\":\"10.1109/ICSEC.2013.6694761\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the software development, defects affect quality and cost in an adverse way. Therefore, various studies have been proposed defect prediction techniques. Most of current defect prediction approaches use past project data for building prediction models. That is, these approaches are difficult to apply new development projects without past data. In this study, we use 28 versions of 8 projects to conduct experiments using the fault-prone filtering technique. Fault-prone filtering is a method that predicts faults using tokens from source code modules. Since the classes of tokens have impact to the accuracy of fault-proneness, we conduct an experiment to find appropriate token sets for prediction. From the results of experiments, we found that using tokens extracted from all parts of modules is the best way to predict faults and using tokens extracted from code part of modules shows better precision.\",\"PeriodicalId\":191620,\"journal\":{\"name\":\"2013 International Computer Science and Engineering Conference (ICSEC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Computer Science and Engineering Conference (ICSEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSEC.2013.6694761\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Computer Science and Engineering Conference (ICSEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSEC.2013.6694761","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在软件开发中,缺陷对质量和成本有不利的影响。因此,各种研究提出了缺陷预测技术。目前大多数缺陷预测方法使用过去的项目数据来构建预测模型。也就是说,如果没有过去的数据,这些方法很难应用于新的开发项目。在本研究中,我们使用8个项目的28个版本进行易故障滤波技术的实验。易出错过滤是一种使用源代码模块中的令牌预测错误的方法。由于令牌的类别对错误倾向的准确性有影响,我们进行了一个实验来寻找合适的令牌集进行预测。实验结果表明,使用从模块的所有部分提取的标记是预测故障的最佳方法,使用从模块的代码部分提取的标记具有更好的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On effects of tokens in source code to accuracy of fault-prone module prediction
In the software development, defects affect quality and cost in an adverse way. Therefore, various studies have been proposed defect prediction techniques. Most of current defect prediction approaches use past project data for building prediction models. That is, these approaches are difficult to apply new development projects without past data. In this study, we use 28 versions of 8 projects to conduct experiments using the fault-prone filtering technique. Fault-prone filtering is a method that predicts faults using tokens from source code modules. Since the classes of tokens have impact to the accuracy of fault-proneness, we conduct an experiment to find appropriate token sets for prediction. From the results of experiments, we found that using tokens extracted from all parts of modules is the best way to predict faults and using tokens extracted from code part of modules shows better precision.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信