难度可控和可扩展约束多目标测试问题

Zhun Fan, Wenji Li, Xinye Cai, Hui Li, Kaiwen Hu, Haibin Yin
{"title":"难度可控和可扩展约束多目标测试问题","authors":"Zhun Fan, Wenji Li, Xinye Cai, Hui Li, Kaiwen Hu, Haibin Yin","doi":"10.1109/ICIICII.2015.105","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a general toolkit to construct constrained multi-objective optimisation problems (CMOPs) with three different kinds of constraint functions. Based on this toolkit, we suggested eight constrained multi-objective optimisation problems named CMOP1-CMOP8. As the ratio of feasible regions in the whole search space determines the difficulty of a constrained multi-objective optimisation problem, we propose four test instances CMOP3-6, which have very low ratio of feasible regions. To study the difficulties of proposed test instances, we make some experiments with two popular CMOEAs - MOEA/D-CDP and NSGA-II-CDP, and analysed their performances.","PeriodicalId":349920,"journal":{"name":"2015 International Conference on Industrial Informatics - Computing Technology, Intelligent Technology, Industrial Information Integration","volume":"53 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Difficulty Controllable and Scalable Constrained Multi-objective Test Problems\",\"authors\":\"Zhun Fan, Wenji Li, Xinye Cai, Hui Li, Kaiwen Hu, Haibin Yin\",\"doi\":\"10.1109/ICIICII.2015.105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a general toolkit to construct constrained multi-objective optimisation problems (CMOPs) with three different kinds of constraint functions. Based on this toolkit, we suggested eight constrained multi-objective optimisation problems named CMOP1-CMOP8. As the ratio of feasible regions in the whole search space determines the difficulty of a constrained multi-objective optimisation problem, we propose four test instances CMOP3-6, which have very low ratio of feasible regions. To study the difficulties of proposed test instances, we make some experiments with two popular CMOEAs - MOEA/D-CDP and NSGA-II-CDP, and analysed their performances.\",\"PeriodicalId\":349920,\"journal\":{\"name\":\"2015 International Conference on Industrial Informatics - Computing Technology, Intelligent Technology, Industrial Information Integration\",\"volume\":\"53 4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Industrial Informatics - Computing Technology, Intelligent Technology, Industrial Information Integration\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIICII.2015.105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Industrial Informatics - Computing Technology, Intelligent Technology, Industrial Information Integration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIICII.2015.105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在本文中,我们提出了一个通用工具包来构造具有三种不同约束函数的约束多目标优化问题(cops)。在此基础上,提出了8个约束多目标优化问题,命名为CMOP1-CMOP8。由于整个搜索空间中可行区域的比例决定了约束多目标优化问题的难度,我们提出了4个可行区域比例非常低的测试例cmp3 -6。为了研究所提出的测试实例的困难,我们对两种流行的cmoea - MOEA/D-CDP和NSGA-II-CDP进行了实验,并分析了它们的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Difficulty Controllable and Scalable Constrained Multi-objective Test Problems
In this paper, we propose a general toolkit to construct constrained multi-objective optimisation problems (CMOPs) with three different kinds of constraint functions. Based on this toolkit, we suggested eight constrained multi-objective optimisation problems named CMOP1-CMOP8. As the ratio of feasible regions in the whole search space determines the difficulty of a constrained multi-objective optimisation problem, we propose four test instances CMOP3-6, which have very low ratio of feasible regions. To study the difficulties of proposed test instances, we make some experiments with two popular CMOEAs - MOEA/D-CDP and NSGA-II-CDP, and analysed their performances.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信