铁路系统参数估计的贝叶斯方法

Nouha Jaoua, P. Vanheeghe, Nicolas Navarro, Olivier Langlois, Marius Iordache
{"title":"铁路系统参数估计的贝叶斯方法","authors":"Nouha Jaoua, P. Vanheeghe, Nicolas Navarro, Olivier Langlois, Marius Iordache","doi":"10.1109/ATSIP.2018.8364485","DOIUrl":null,"url":null,"abstract":"In this paper, we address the problem of parameter estimation in railway systems. For this purpose, a physical model of the train based on the fundamental principle of dynamics is proposed. Then, the parameter estimation is handled via an approach using a combination of Expectation-Maximization algorithm and Sequential Monte Carlo methods. The experiments performed both on synthetic and real data show the efficiency of the considered method.","PeriodicalId":332253,"journal":{"name":"2018 4th International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Bayesian approach for parameter estimation in railway systems\",\"authors\":\"Nouha Jaoua, P. Vanheeghe, Nicolas Navarro, Olivier Langlois, Marius Iordache\",\"doi\":\"10.1109/ATSIP.2018.8364485\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we address the problem of parameter estimation in railway systems. For this purpose, a physical model of the train based on the fundamental principle of dynamics is proposed. Then, the parameter estimation is handled via an approach using a combination of Expectation-Maximization algorithm and Sequential Monte Carlo methods. The experiments performed both on synthetic and real data show the efficiency of the considered method.\",\"PeriodicalId\":332253,\"journal\":{\"name\":\"2018 4th International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 4th International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ATSIP.2018.8364485\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 4th International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ATSIP.2018.8364485","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文主要研究铁路系统的参数估计问题。为此,提出了基于动力学基本原理的列车物理模型。然后,通过期望最大化算法和顺序蒙特卡罗方法相结合的方法来处理参数估计。在合成数据和实际数据上进行的实验表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Bayesian approach for parameter estimation in railway systems
In this paper, we address the problem of parameter estimation in railway systems. For this purpose, a physical model of the train based on the fundamental principle of dynamics is proposed. Then, the parameter estimation is handled via an approach using a combination of Expectation-Maximization algorithm and Sequential Monte Carlo methods. The experiments performed both on synthetic and real data show the efficiency of the considered method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信