系统交易策略收益的技术分析综述,以及一种产生显著正收益的新型系统策略

Marco Basanisi, Roberto Torresetti
{"title":"系统交易策略收益的技术分析综述,以及一种产生显著正收益的新型系统策略","authors":"Marco Basanisi, Roberto Torresetti","doi":"10.55214/jcrbef.v5i1.204","DOIUrl":null,"url":null,"abstract":"This paper contributes to the literature on systematic trading strategies, in particular technical analysis profitability. We measure the profitability and forecasting power of a trend following strategy implemented in Python on a wide perimeter (205 European stocks, 11 industries, 7 major stock exchanges) over 8 years: from 2015 to 2022. The strategy signal is based on 4 moving averages and a trailing stop loss. We also introduce a mechanism based on trailing upper and lower price bounds to avoid false signals and limit transaction costs during lateral movements. We calibrate the iper-parameters to all stocks belonging to the same industry. The returns of the strategy applied to the constituents of the top performing industries provides a total return of 20% net of transaction costs, with an annualized Sharpe ratio of 0.54, in the out of sample time window from 2020 to 2022.","PeriodicalId":369772,"journal":{"name":"Journal of Contemporary Research in Business, Economics and Finance","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An overview of technical analysis in systematic trading strategies returns and a novel systematic strategy yielding positive significant returns\",\"authors\":\"Marco Basanisi, Roberto Torresetti\",\"doi\":\"10.55214/jcrbef.v5i1.204\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper contributes to the literature on systematic trading strategies, in particular technical analysis profitability. We measure the profitability and forecasting power of a trend following strategy implemented in Python on a wide perimeter (205 European stocks, 11 industries, 7 major stock exchanges) over 8 years: from 2015 to 2022. The strategy signal is based on 4 moving averages and a trailing stop loss. We also introduce a mechanism based on trailing upper and lower price bounds to avoid false signals and limit transaction costs during lateral movements. We calibrate the iper-parameters to all stocks belonging to the same industry. The returns of the strategy applied to the constituents of the top performing industries provides a total return of 20% net of transaction costs, with an annualized Sharpe ratio of 0.54, in the out of sample time window from 2020 to 2022.\",\"PeriodicalId\":369772,\"journal\":{\"name\":\"Journal of Contemporary Research in Business, Economics and Finance\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Contemporary Research in Business, Economics and Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.55214/jcrbef.v5i1.204\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Contemporary Research in Business, Economics and Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55214/jcrbef.v5i1.204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文对系统交易策略,特别是技术分析盈利能力的研究做出了贡献。我们衡量了在Python中实施的趋势跟踪策略的盈利能力和预测能力,时间跨度为8年(从2015年到2022年),涉及范围广泛(205只欧洲股票,11个行业,7个主要证券交易所)。策略信号是基于4个移动平均线和跟踪止损。我们还引入了一种基于跟踪价格上限和下限的机制,以避免错误信号并限制横向运动中的交易成本。我们将iper参数校准为属于同一行业的所有股票。在2020年至2022年的样本外时间窗口内,将该策略应用于表现最佳行业的成分股,其净交易成本的总回报率为20%,年化夏普比率为0.54。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An overview of technical analysis in systematic trading strategies returns and a novel systematic strategy yielding positive significant returns
This paper contributes to the literature on systematic trading strategies, in particular technical analysis profitability. We measure the profitability and forecasting power of a trend following strategy implemented in Python on a wide perimeter (205 European stocks, 11 industries, 7 major stock exchanges) over 8 years: from 2015 to 2022. The strategy signal is based on 4 moving averages and a trailing stop loss. We also introduce a mechanism based on trailing upper and lower price bounds to avoid false signals and limit transaction costs during lateral movements. We calibrate the iper-parameters to all stocks belonging to the same industry. The returns of the strategy applied to the constituents of the top performing industries provides a total return of 20% net of transaction costs, with an annualized Sharpe ratio of 0.54, in the out of sample time window from 2020 to 2022.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信