位置感知SpMV的可变大小块

Naveen Namashivavam, Sanyam Mehta, P. Yew
{"title":"位置感知SpMV的可变大小块","authors":"Naveen Namashivavam, Sanyam Mehta, P. Yew","doi":"10.1109/CGO51591.2021.9370327","DOIUrl":null,"url":null,"abstract":"Blocking is an important optimization option available to mitigate the data movement overhead and improve the temporal locality in SpMV, a sparse BLAS kernel with irregular memory reference pattern. In this work, we propose an analytical model to determine the effective block size for highly irregular sparse matrices by factoring the distribution of non-zeros in the sparse dataset. As a result, the blocks generated by our scheme are variable-sized as opposed to constant-sized in most existing SpMV algorithms. We demonstrate our blocking scheme using Compressed Vector Blocks (CVB), a new column-based blocked data format, on Intel Xeon Skylake-X multicore processor. We evaluated the performance of CVB-based SpMV with variable-sized blocks using extensive set of matrices from Stanford Network Analysis Platform (SNAP). Our evaluation shows a speedup of up to 2.62X (with an average of 1.73X) and 2.02X (with an average of 1.18X) over the highly vendor tuned SpMV implementation in Intel's Math Kernel Library (MKL) on single and multiple Intel Xeon cores respectively.","PeriodicalId":275062,"journal":{"name":"2021 IEEE/ACM International Symposium on Code Generation and Optimization (CGO)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Variable-Sized Blocks for Locality-Aware SpMV\",\"authors\":\"Naveen Namashivavam, Sanyam Mehta, P. Yew\",\"doi\":\"10.1109/CGO51591.2021.9370327\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Blocking is an important optimization option available to mitigate the data movement overhead and improve the temporal locality in SpMV, a sparse BLAS kernel with irregular memory reference pattern. In this work, we propose an analytical model to determine the effective block size for highly irregular sparse matrices by factoring the distribution of non-zeros in the sparse dataset. As a result, the blocks generated by our scheme are variable-sized as opposed to constant-sized in most existing SpMV algorithms. We demonstrate our blocking scheme using Compressed Vector Blocks (CVB), a new column-based blocked data format, on Intel Xeon Skylake-X multicore processor. We evaluated the performance of CVB-based SpMV with variable-sized blocks using extensive set of matrices from Stanford Network Analysis Platform (SNAP). Our evaluation shows a speedup of up to 2.62X (with an average of 1.73X) and 2.02X (with an average of 1.18X) over the highly vendor tuned SpMV implementation in Intel's Math Kernel Library (MKL) on single and multiple Intel Xeon cores respectively.\",\"PeriodicalId\":275062,\"journal\":{\"name\":\"2021 IEEE/ACM International Symposium on Code Generation and Optimization (CGO)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE/ACM International Symposium on Code Generation and Optimization (CGO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CGO51591.2021.9370327\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/ACM International Symposium on Code Generation and Optimization (CGO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CGO51591.2021.9370327","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

在SpMV(一个具有不规则内存引用模式的稀疏BLAS内核)中,阻塞是一种重要的优化选项,可用于减轻数据移动开销和改善时间局部性。在这项工作中,我们提出了一个分析模型,通过分解稀疏数据集中非零的分布来确定高度不规则稀疏矩阵的有效块大小。因此,我们的方案生成的块是可变大小的,而不是大多数现有SpMV算法中的恒定大小。我们在Intel至强Skylake-X多核处理器上使用压缩矢量块(CVB)(一种新的基于列的阻塞数据格式)演示了我们的阻塞方案。我们使用斯坦福网络分析平台(SNAP)的广泛矩阵集评估了基于cvb的可变大小块的SpMV的性能。我们的评估显示,与在Intel的Math Kernel Library (MKL)中高度优化的SpMV实现相比,在单个和多个Intel Xeon内核上的加速分别高达2.62倍(平均为1.73倍)和2.02倍(平均为1.18倍)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Variable-Sized Blocks for Locality-Aware SpMV
Blocking is an important optimization option available to mitigate the data movement overhead and improve the temporal locality in SpMV, a sparse BLAS kernel with irregular memory reference pattern. In this work, we propose an analytical model to determine the effective block size for highly irregular sparse matrices by factoring the distribution of non-zeros in the sparse dataset. As a result, the blocks generated by our scheme are variable-sized as opposed to constant-sized in most existing SpMV algorithms. We demonstrate our blocking scheme using Compressed Vector Blocks (CVB), a new column-based blocked data format, on Intel Xeon Skylake-X multicore processor. We evaluated the performance of CVB-based SpMV with variable-sized blocks using extensive set of matrices from Stanford Network Analysis Platform (SNAP). Our evaluation shows a speedup of up to 2.62X (with an average of 1.73X) and 2.02X (with an average of 1.18X) over the highly vendor tuned SpMV implementation in Intel's Math Kernel Library (MKL) on single and multiple Intel Xeon cores respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信