{"title":"不列举度量分区的多扩展对象的边际关联概率","authors":"Shishan Yang, Laura M. Wolf, M. Baum","doi":"10.23919/FUSION45008.2020.9190500","DOIUrl":null,"url":null,"abstract":"In the case of high-resolution or near field sensors, an object normally gives rise to multiple measurements per scan. One of the key tasks in tracking such objects is to differentiate the origins of the measurements. In this work, a new data association approach for extended object tracking, which is inspired by Joint Integrated Probabilistic Data Association (JIPDA), is proposed. The key idea is to calculate marginal association probabilities for individual measurements (instead of considering measurement partitions). Our problem formulation allows us to obtain the marginal association probabilities without collective exhaustion of association hypotheses and partitions. The proposed data association method is illustrated first using a simulation with Gaussian distributed measurements. Combined with an extended object measurement model, the data association quality is further assessed in a simulation and an experiment by tracking pedestrians using Lidar data from the KITTI dataset.","PeriodicalId":419881,"journal":{"name":"2020 IEEE 23rd International Conference on Information Fusion (FUSION)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Marginal Association Probabilities for Multiple Extended Objects without Enumeration of Measurement Partitions\",\"authors\":\"Shishan Yang, Laura M. Wolf, M. Baum\",\"doi\":\"10.23919/FUSION45008.2020.9190500\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the case of high-resolution or near field sensors, an object normally gives rise to multiple measurements per scan. One of the key tasks in tracking such objects is to differentiate the origins of the measurements. In this work, a new data association approach for extended object tracking, which is inspired by Joint Integrated Probabilistic Data Association (JIPDA), is proposed. The key idea is to calculate marginal association probabilities for individual measurements (instead of considering measurement partitions). Our problem formulation allows us to obtain the marginal association probabilities without collective exhaustion of association hypotheses and partitions. The proposed data association method is illustrated first using a simulation with Gaussian distributed measurements. Combined with an extended object measurement model, the data association quality is further assessed in a simulation and an experiment by tracking pedestrians using Lidar data from the KITTI dataset.\",\"PeriodicalId\":419881,\"journal\":{\"name\":\"2020 IEEE 23rd International Conference on Information Fusion (FUSION)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 23rd International Conference on Information Fusion (FUSION)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/FUSION45008.2020.9190500\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 23rd International Conference on Information Fusion (FUSION)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/FUSION45008.2020.9190500","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Marginal Association Probabilities for Multiple Extended Objects without Enumeration of Measurement Partitions
In the case of high-resolution or near field sensors, an object normally gives rise to multiple measurements per scan. One of the key tasks in tracking such objects is to differentiate the origins of the measurements. In this work, a new data association approach for extended object tracking, which is inspired by Joint Integrated Probabilistic Data Association (JIPDA), is proposed. The key idea is to calculate marginal association probabilities for individual measurements (instead of considering measurement partitions). Our problem formulation allows us to obtain the marginal association probabilities without collective exhaustion of association hypotheses and partitions. The proposed data association method is illustrated first using a simulation with Gaussian distributed measurements. Combined with an extended object measurement model, the data association quality is further assessed in a simulation and an experiment by tracking pedestrians using Lidar data from the KITTI dataset.