分布式粒子滤波采用高斯近似似然函数

T. Ghirmai
{"title":"分布式粒子滤波采用高斯近似似然函数","authors":"T. Ghirmai","doi":"10.1109/CISS.2014.6814166","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a distributed particle filtering algorithm for sensor networks in which multiple sensors collaborate to monitor and track an object in a nonlinear/non-Gaussian dynamic system. According to the algorithm, the sensors collaboratively compute the global likelihood function in order to make local estimates that takes into account measurements from all the sensors. To compute the global likelihood, each sensor first approximates its local likelihood function using Gaussian function, and exchange its approximated local likelihood with the other sensors. Such approximation saves communication overhead because it requires the sensors to exchange only the mean and the covariance of the approximated Gaussian local likelihood functions. The exchange of the parameters of the likelihood functions between sensors is accomplished using an average consensus filter or by implementing forward-backward propagation strategy.","PeriodicalId":169460,"journal":{"name":"2014 48th Annual Conference on Information Sciences and Systems (CISS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Distributed particle filter using Gaussian approximated likelihood function\",\"authors\":\"T. Ghirmai\",\"doi\":\"10.1109/CISS.2014.6814166\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a distributed particle filtering algorithm for sensor networks in which multiple sensors collaborate to monitor and track an object in a nonlinear/non-Gaussian dynamic system. According to the algorithm, the sensors collaboratively compute the global likelihood function in order to make local estimates that takes into account measurements from all the sensors. To compute the global likelihood, each sensor first approximates its local likelihood function using Gaussian function, and exchange its approximated local likelihood with the other sensors. Such approximation saves communication overhead because it requires the sensors to exchange only the mean and the covariance of the approximated Gaussian local likelihood functions. The exchange of the parameters of the likelihood functions between sensors is accomplished using an average consensus filter or by implementing forward-backward propagation strategy.\",\"PeriodicalId\":169460,\"journal\":{\"name\":\"2014 48th Annual Conference on Information Sciences and Systems (CISS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 48th Annual Conference on Information Sciences and Systems (CISS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CISS.2014.6814166\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 48th Annual Conference on Information Sciences and Systems (CISS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISS.2014.6814166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在本文中,我们提出了一种分布式粒子滤波算法用于传感器网络,其中多个传感器协作监测和跟踪非线性/非高斯动态系统中的目标。根据该算法,传感器协同计算全局似然函数,以便考虑所有传感器的测量结果进行局部估计。为了计算全局似然,每个传感器首先使用高斯函数近似其局部似然函数,并与其他传感器交换其近似的局部似然函数。这种近似节省了通信开销,因为它只需要传感器交换近似高斯局部似然函数的均值和协方差。传感器之间的似然函数参数交换采用平均共识滤波器或前后向传播策略实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distributed particle filter using Gaussian approximated likelihood function
In this paper, we propose a distributed particle filtering algorithm for sensor networks in which multiple sensors collaborate to monitor and track an object in a nonlinear/non-Gaussian dynamic system. According to the algorithm, the sensors collaboratively compute the global likelihood function in order to make local estimates that takes into account measurements from all the sensors. To compute the global likelihood, each sensor first approximates its local likelihood function using Gaussian function, and exchange its approximated local likelihood with the other sensors. Such approximation saves communication overhead because it requires the sensors to exchange only the mean and the covariance of the approximated Gaussian local likelihood functions. The exchange of the parameters of the likelihood functions between sensors is accomplished using an average consensus filter or by implementing forward-backward propagation strategy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信