数据网络中矢量自回归过程的在线拓扑估计

Bakht Zaman, L. M. Lopez-Ramos, Daniel Romero, B. Beferull-Lozano
{"title":"数据网络中矢量自回归过程的在线拓扑估计","authors":"Bakht Zaman, L. M. Lopez-Ramos, Daniel Romero, B. Beferull-Lozano","doi":"10.1109/CAMSAP.2017.8313211","DOIUrl":null,"url":null,"abstract":"An important problem in data sciences pertains to inferring causal interactions among a collection of time series. Upon modeling these as a vector autoregressive (VAR) process, this paper deals with estimating the model parameters to identify the underlying causality graph. To exploit the sparse connectivity of causality graphs, the proposed estimators minimize a group-Lasso regularized functional. To cope with real-time applications, big data setups, and possibly time-varying topologies, two online algorithms are presented to recover the sparse coefficients when observations are received sequentially. The proposed algorithms are inspired by the classic recursive least squares (RLS) algorithm and offer complementary benefits in terms of computational efficiency. Numerical results showcase the merits of the proposed schemes in both estimation and prediction tasks.","PeriodicalId":315977,"journal":{"name":"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Online topology estimation for vector autoregressive processes in data networks\",\"authors\":\"Bakht Zaman, L. M. Lopez-Ramos, Daniel Romero, B. Beferull-Lozano\",\"doi\":\"10.1109/CAMSAP.2017.8313211\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An important problem in data sciences pertains to inferring causal interactions among a collection of time series. Upon modeling these as a vector autoregressive (VAR) process, this paper deals with estimating the model parameters to identify the underlying causality graph. To exploit the sparse connectivity of causality graphs, the proposed estimators minimize a group-Lasso regularized functional. To cope with real-time applications, big data setups, and possibly time-varying topologies, two online algorithms are presented to recover the sparse coefficients when observations are received sequentially. The proposed algorithms are inspired by the classic recursive least squares (RLS) algorithm and offer complementary benefits in terms of computational efficiency. Numerical results showcase the merits of the proposed schemes in both estimation and prediction tasks.\",\"PeriodicalId\":315977,\"journal\":{\"name\":\"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CAMSAP.2017.8313211\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAMSAP.2017.8313211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

数据科学中的一个重要问题涉及推断时间序列集合之间的因果相互作用。在将这些建模为向量自回归(VAR)过程之后,本文处理估计模型参数以识别潜在的因果关系图。为了利用因果图的稀疏连通性,提出了最小化群- lasso正则泛函的估计器。为了应对实时应用、大数据设置和可能的时变拓扑,提出了两种在线算法来恢复连续接收观测值时的稀疏系数。所提出的算法受到经典递归最小二乘(RLS)算法的启发,在计算效率方面具有互补的优势。数值结果显示了所提方案在估计和预测任务中的优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Online topology estimation for vector autoregressive processes in data networks
An important problem in data sciences pertains to inferring causal interactions among a collection of time series. Upon modeling these as a vector autoregressive (VAR) process, this paper deals with estimating the model parameters to identify the underlying causality graph. To exploit the sparse connectivity of causality graphs, the proposed estimators minimize a group-Lasso regularized functional. To cope with real-time applications, big data setups, and possibly time-varying topologies, two online algorithms are presented to recover the sparse coefficients when observations are received sequentially. The proposed algorithms are inspired by the classic recursive least squares (RLS) algorithm and offer complementary benefits in terms of computational efficiency. Numerical results showcase the merits of the proposed schemes in both estimation and prediction tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信