Ranyang Zhou, A. Roohi, Durga Misra, Shaahin Angizi
{"title":"FlexiDRAM:一种灵活的内置dram框架,可实现并行通用计算","authors":"Ranyang Zhou, A. Roohi, Durga Misra, Shaahin Angizi","doi":"10.1145/3531437.3539721","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a Flexible processing-in-DRAM framework named FlexiDRAM that supports the efficient implementation of complex bulk bitwise operations. This framework is developed on top of a new reconfigurable in-DRAM accelerator that leverages the analog operation of DRAM sub-arrays and elevates it to implement XOR2-MAJ3 operations between operands stored in the same bit-line. FlexiDRAM first generates an efficient XOR-MAJ representation of the desired logic and then appropriately allocates DRAM rows to the operands to execute any in-DRAM computation. We develop ISA and software support required to compute in-DRAM operation. FlexiDRAM transforms current memory architecture to a massively parallel computational unit and can be leveraged to significantly reduce the latency and energy consumption of complex workloads. Our extensive circuit-to-architecture simulation results show that averaged across two well-known deep learning workloads, FlexiDRAM achieves ∼ 15 × energy-saving and 13 × speedup over the GPU outperforming recent processing-in-DRAM platforms.","PeriodicalId":116486,"journal":{"name":"Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"FlexiDRAM: A Flexible in-DRAM Framework to Enable Parallel General-Purpose Computation\",\"authors\":\"Ranyang Zhou, A. Roohi, Durga Misra, Shaahin Angizi\",\"doi\":\"10.1145/3531437.3539721\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a Flexible processing-in-DRAM framework named FlexiDRAM that supports the efficient implementation of complex bulk bitwise operations. This framework is developed on top of a new reconfigurable in-DRAM accelerator that leverages the analog operation of DRAM sub-arrays and elevates it to implement XOR2-MAJ3 operations between operands stored in the same bit-line. FlexiDRAM first generates an efficient XOR-MAJ representation of the desired logic and then appropriately allocates DRAM rows to the operands to execute any in-DRAM computation. We develop ISA and software support required to compute in-DRAM operation. FlexiDRAM transforms current memory architecture to a massively parallel computational unit and can be leveraged to significantly reduce the latency and energy consumption of complex workloads. Our extensive circuit-to-architecture simulation results show that averaged across two well-known deep learning workloads, FlexiDRAM achieves ∼ 15 × energy-saving and 13 × speedup over the GPU outperforming recent processing-in-DRAM platforms.\",\"PeriodicalId\":116486,\"journal\":{\"name\":\"Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3531437.3539721\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3531437.3539721","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
FlexiDRAM: A Flexible in-DRAM Framework to Enable Parallel General-Purpose Computation
In this paper, we propose a Flexible processing-in-DRAM framework named FlexiDRAM that supports the efficient implementation of complex bulk bitwise operations. This framework is developed on top of a new reconfigurable in-DRAM accelerator that leverages the analog operation of DRAM sub-arrays and elevates it to implement XOR2-MAJ3 operations between operands stored in the same bit-line. FlexiDRAM first generates an efficient XOR-MAJ representation of the desired logic and then appropriately allocates DRAM rows to the operands to execute any in-DRAM computation. We develop ISA and software support required to compute in-DRAM operation. FlexiDRAM transforms current memory architecture to a massively parallel computational unit and can be leveraged to significantly reduce the latency and energy consumption of complex workloads. Our extensive circuit-to-architecture simulation results show that averaged across two well-known deep learning workloads, FlexiDRAM achieves ∼ 15 × energy-saving and 13 × speedup over the GPU outperforming recent processing-in-DRAM platforms.