{"title":"基于案例的仿真结果总结推理","authors":"N. Rowe, Charles Knight","doi":"10.1109/CSCI49370.2019.00076","DOIUrl":null,"url":null,"abstract":"Simulations can produce large quantities of data. To reason about the results of simulations, machine-learning methods can be helpful. We explored a case-based reasoning approach to summarizing the results of a probabilistic simulation of naval combat involving missiles. We used a tree structure to index the data and showed that it gave good accuracy in estimating the results of this simulation with new parameters. We are now extending these ideas to a more complex military simulation.","PeriodicalId":103662,"journal":{"name":"2019 International Conference on Computational Science and Computational Intelligence (CSCI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Case-Based Reasoning for Summarizing Simulation Results\",\"authors\":\"N. Rowe, Charles Knight\",\"doi\":\"10.1109/CSCI49370.2019.00076\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Simulations can produce large quantities of data. To reason about the results of simulations, machine-learning methods can be helpful. We explored a case-based reasoning approach to summarizing the results of a probabilistic simulation of naval combat involving missiles. We used a tree structure to index the data and showed that it gave good accuracy in estimating the results of this simulation with new parameters. We are now extending these ideas to a more complex military simulation.\",\"PeriodicalId\":103662,\"journal\":{\"name\":\"2019 International Conference on Computational Science and Computational Intelligence (CSCI)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Computational Science and Computational Intelligence (CSCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSCI49370.2019.00076\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Computational Science and Computational Intelligence (CSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSCI49370.2019.00076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Case-Based Reasoning for Summarizing Simulation Results
Simulations can produce large quantities of data. To reason about the results of simulations, machine-learning methods can be helpful. We explored a case-based reasoning approach to summarizing the results of a probabilistic simulation of naval combat involving missiles. We used a tree structure to index the data and showed that it gave good accuracy in estimating the results of this simulation with new parameters. We are now extending these ideas to a more complex military simulation.