{"title":"统一网:规范证明网量词","authors":"Dominic J. D. Hughes","doi":"10.1145/3209108.3209159","DOIUrl":null,"url":null,"abstract":"Proof nets for MLL (unit-free Multiplicative Linear Logic) are concise graphical representations of proofs which are canonical in the sense that they abstract away syntactic redundancy such as the order of non-interacting rules. We argue that Girard's extension to MLL1 (first-order MLL) fails to be canonical because of redundant existential witnesses, and present canonical MLL1 proof nets called unification nets without them. For example, while there are infinitely many cut-free Girard nets ∀x Px ⊢ ∃x Px, one per arbitrary witness for ∃x, there is a unique cut-free unification net, with no specified witness. Cut elimination for unification nets is local and linear time, while Girard's is non-local and exponential time. Since some unification nets are exponentially smaller than corresponding Girard nets and sequent proofs, technical delicacy is required to ensure correctness is polynomial-time (quadratic). These results transcend MLL1 via a methodological insight: for canonical quantifiers, the standard parallel/sequential dichotomy of proof nets is insufficient; an implicit/explicit witness dichotomy is needed. Current work extends unification nets to additives and uses them to extend combinatorial proofs [Proofs without syntax, Annals of Mathematics, 2006] to classical first-order logic.","PeriodicalId":389131,"journal":{"name":"Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Unification nets: canonical proof net quantifiers\",\"authors\":\"Dominic J. D. Hughes\",\"doi\":\"10.1145/3209108.3209159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Proof nets for MLL (unit-free Multiplicative Linear Logic) are concise graphical representations of proofs which are canonical in the sense that they abstract away syntactic redundancy such as the order of non-interacting rules. We argue that Girard's extension to MLL1 (first-order MLL) fails to be canonical because of redundant existential witnesses, and present canonical MLL1 proof nets called unification nets without them. For example, while there are infinitely many cut-free Girard nets ∀x Px ⊢ ∃x Px, one per arbitrary witness for ∃x, there is a unique cut-free unification net, with no specified witness. Cut elimination for unification nets is local and linear time, while Girard's is non-local and exponential time. Since some unification nets are exponentially smaller than corresponding Girard nets and sequent proofs, technical delicacy is required to ensure correctness is polynomial-time (quadratic). These results transcend MLL1 via a methodological insight: for canonical quantifiers, the standard parallel/sequential dichotomy of proof nets is insufficient; an implicit/explicit witness dichotomy is needed. Current work extends unification nets to additives and uses them to extend combinatorial proofs [Proofs without syntax, Annals of Mathematics, 2006] to classical first-order logic.\",\"PeriodicalId\":389131,\"journal\":{\"name\":\"Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-02-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3209108.3209159\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3209108.3209159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Proof nets for MLL (unit-free Multiplicative Linear Logic) are concise graphical representations of proofs which are canonical in the sense that they abstract away syntactic redundancy such as the order of non-interacting rules. We argue that Girard's extension to MLL1 (first-order MLL) fails to be canonical because of redundant existential witnesses, and present canonical MLL1 proof nets called unification nets without them. For example, while there are infinitely many cut-free Girard nets ∀x Px ⊢ ∃x Px, one per arbitrary witness for ∃x, there is a unique cut-free unification net, with no specified witness. Cut elimination for unification nets is local and linear time, while Girard's is non-local and exponential time. Since some unification nets are exponentially smaller than corresponding Girard nets and sequent proofs, technical delicacy is required to ensure correctness is polynomial-time (quadratic). These results transcend MLL1 via a methodological insight: for canonical quantifiers, the standard parallel/sequential dichotomy of proof nets is insufficient; an implicit/explicit witness dichotomy is needed. Current work extends unification nets to additives and uses them to extend combinatorial proofs [Proofs without syntax, Annals of Mathematics, 2006] to classical first-order logic.