Masaru Takeuchi, M. Nakajima, H. Tajima, T. Fukuda
{"title":"用于微纳米尺度操作的热响应凝胶探针的研制","authors":"Masaru Takeuchi, M. Nakajima, H. Tajima, T. Fukuda","doi":"10.1109/NANO.2013.6721017","DOIUrl":null,"url":null,"abstract":"In this paper, we developed the thermoresponsive gel probe (GeT probe) to conduct micro-nano manipulation under an optical microscope. We developed the GeT probe to use in the solution which is not containing thermoresponsive polymer. The fixation force by the probe was measured using an atomic force microscope (AFM) cantilever. The evaluation of the probe showed that the probe can generate almost the same fixation force in thermoresponsive polymer solution and in the pure water. The developed GeT probe has more than 50 μm tip size and it makes difficult to handle sub-micron objects. Therefore, the new fabrication procedure to miniaturize the probe tip was also proposed to manipulate nano-scale objects. The fabrication method has the potential to minimize the probe tip in sub-micron scale.","PeriodicalId":189707,"journal":{"name":"2013 13th IEEE International Conference on Nanotechnology (IEEE-NANO 2013)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Development of thermoresponsive gel probe for manipulation from micro to nano scale\",\"authors\":\"Masaru Takeuchi, M. Nakajima, H. Tajima, T. Fukuda\",\"doi\":\"10.1109/NANO.2013.6721017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we developed the thermoresponsive gel probe (GeT probe) to conduct micro-nano manipulation under an optical microscope. We developed the GeT probe to use in the solution which is not containing thermoresponsive polymer. The fixation force by the probe was measured using an atomic force microscope (AFM) cantilever. The evaluation of the probe showed that the probe can generate almost the same fixation force in thermoresponsive polymer solution and in the pure water. The developed GeT probe has more than 50 μm tip size and it makes difficult to handle sub-micron objects. Therefore, the new fabrication procedure to miniaturize the probe tip was also proposed to manipulate nano-scale objects. The fabrication method has the potential to minimize the probe tip in sub-micron scale.\",\"PeriodicalId\":189707,\"journal\":{\"name\":\"2013 13th IEEE International Conference on Nanotechnology (IEEE-NANO 2013)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 13th IEEE International Conference on Nanotechnology (IEEE-NANO 2013)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NANO.2013.6721017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 13th IEEE International Conference on Nanotechnology (IEEE-NANO 2013)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NANO.2013.6721017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Development of thermoresponsive gel probe for manipulation from micro to nano scale
In this paper, we developed the thermoresponsive gel probe (GeT probe) to conduct micro-nano manipulation under an optical microscope. We developed the GeT probe to use in the solution which is not containing thermoresponsive polymer. The fixation force by the probe was measured using an atomic force microscope (AFM) cantilever. The evaluation of the probe showed that the probe can generate almost the same fixation force in thermoresponsive polymer solution and in the pure water. The developed GeT probe has more than 50 μm tip size and it makes difficult to handle sub-micron objects. Therefore, the new fabrication procedure to miniaturize the probe tip was also proposed to manipulate nano-scale objects. The fabrication method has the potential to minimize the probe tip in sub-micron scale.