基于拓扑稳定的阈值量化鲁棒变化检测

Chang Su, A. Amer
{"title":"基于拓扑稳定的阈值量化鲁棒变化检测","authors":"Chang Su, A. Amer","doi":"10.1109/ICIP.2007.4379318","DOIUrl":null,"url":null,"abstract":"A threshold quantization algorithm for robust change detection is proposed in this paper. According to the threshold distribution of difference frames, a 4-level Lloyd-Max quantizer is designed, and then, based on the topological stabilization of video frames, the Lloyd-Max quantizer is refined by a linear adjusting function to form the proposed threshold quantizer. Objective and subjective experiments show that the proposed quantizer greatly improves the robustness of the thresholding methods for change detection thus significantly improves the quality of change masks without increasing computation loads.","PeriodicalId":131177,"journal":{"name":"2007 IEEE International Conference on Image Processing","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Topological-Stabilization Based Threshold Quantization for Robust Change Detection\",\"authors\":\"Chang Su, A. Amer\",\"doi\":\"10.1109/ICIP.2007.4379318\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A threshold quantization algorithm for robust change detection is proposed in this paper. According to the threshold distribution of difference frames, a 4-level Lloyd-Max quantizer is designed, and then, based on the topological stabilization of video frames, the Lloyd-Max quantizer is refined by a linear adjusting function to form the proposed threshold quantizer. Objective and subjective experiments show that the proposed quantizer greatly improves the robustness of the thresholding methods for change detection thus significantly improves the quality of change masks without increasing computation loads.\",\"PeriodicalId\":131177,\"journal\":{\"name\":\"2007 IEEE International Conference on Image Processing\",\"volume\":\"102 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE International Conference on Image Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2007.4379318\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Conference on Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2007.4379318","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种用于鲁棒变化检测的阈值量化算法。根据差分帧的阈值分布,设计了一个4级Lloyd-Max量化器,然后基于视频帧的拓扑稳定性,通过线性调节函数对Lloyd-Max量化器进行细化,形成所提出的阈值量化器。客观和主观实验表明,该量化器在不增加计算量的情况下,大大提高了阈值检测方法的鲁棒性,从而显著提高了变化掩码的质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Topological-Stabilization Based Threshold Quantization for Robust Change Detection
A threshold quantization algorithm for robust change detection is proposed in this paper. According to the threshold distribution of difference frames, a 4-level Lloyd-Max quantizer is designed, and then, based on the topological stabilization of video frames, the Lloyd-Max quantizer is refined by a linear adjusting function to form the proposed threshold quantizer. Objective and subjective experiments show that the proposed quantizer greatly improves the robustness of the thresholding methods for change detection thus significantly improves the quality of change masks without increasing computation loads.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信