交通网络最短路径与加权细分

Radwa El Shawi, Joachim Gudmundsson
{"title":"交通网络最短路径与加权细分","authors":"Radwa El Shawi, Joachim Gudmundsson","doi":"10.4018/978-1-61350-053-8.ch020","DOIUrl":null,"url":null,"abstract":"The shortest path problem asks for a path between two given points such that the sum of its edges is minimized. The problem has a rich history and has been studied extensively since the 1950’s in many areas of computer science, among them network optimization, graph theory and computational geometry. In this chapter we consider two versions of the problem; the shortest path in a transportation network and the shortest path in a weighted subdivision, sometimes called a terrain.","PeriodicalId":227251,"journal":{"name":"Graph Data Management","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Shortest Path in Transportation Network and Weighted Subdivisions\",\"authors\":\"Radwa El Shawi, Joachim Gudmundsson\",\"doi\":\"10.4018/978-1-61350-053-8.ch020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The shortest path problem asks for a path between two given points such that the sum of its edges is minimized. The problem has a rich history and has been studied extensively since the 1950’s in many areas of computer science, among them network optimization, graph theory and computational geometry. In this chapter we consider two versions of the problem; the shortest path in a transportation network and the shortest path in a weighted subdivision, sometimes called a terrain.\",\"PeriodicalId\":227251,\"journal\":{\"name\":\"Graph Data Management\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Graph Data Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/978-1-61350-053-8.ch020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graph Data Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/978-1-61350-053-8.ch020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

最短路径问题要求在两个给定点之间找到一条路径,使得它的边之和最小。自20世纪50年代以来,这个问题在计算机科学的许多领域得到了广泛的研究,其中包括网络优化、图论和计算几何。在本章中,我们考虑这个问题的两个版本;交通网络中的最短路径和加权分区中的最短路径,有时称为地形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Shortest Path in Transportation Network and Weighted Subdivisions
The shortest path problem asks for a path between two given points such that the sum of its edges is minimized. The problem has a rich history and has been studied extensively since the 1950’s in many areas of computer science, among them network optimization, graph theory and computational geometry. In this chapter we consider two versions of the problem; the shortest path in a transportation network and the shortest path in a weighted subdivision, sometimes called a terrain.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信