对投射复合物的非圆柱形作用

M. Bestvina, K. Bromberg, K. Fujiwara, A. Sisto
{"title":"对投射复合物的非圆柱形作用","authors":"M. Bestvina, K. Bromberg, K. Fujiwara, A. Sisto","doi":"10.4171/lem/65-1/2-1","DOIUrl":null,"url":null,"abstract":"We simplify the construction of projection complexes due to Bestvina-Bromberg-Fujiwara. To do so, we introduce a sharper version of the Behrstock inequality, and show that it can always be enforced. Furthermore, we use the new setup to prove acylindricity results for the action on the projection complexes. We also treat quasi-trees of metric spaces associated to projection complexes, and prove an acylindricity criterion in that context as well.","PeriodicalId":344085,"journal":{"name":"L’Enseignement Mathématique","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"Acylindrical actions on projection complexes\",\"authors\":\"M. Bestvina, K. Bromberg, K. Fujiwara, A. Sisto\",\"doi\":\"10.4171/lem/65-1/2-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We simplify the construction of projection complexes due to Bestvina-Bromberg-Fujiwara. To do so, we introduce a sharper version of the Behrstock inequality, and show that it can always be enforced. Furthermore, we use the new setup to prove acylindricity results for the action on the projection complexes. We also treat quasi-trees of metric spaces associated to projection complexes, and prove an acylindricity criterion in that context as well.\",\"PeriodicalId\":344085,\"journal\":{\"name\":\"L’Enseignement Mathématique\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"L’Enseignement Mathématique\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4171/lem/65-1/2-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"L’Enseignement Mathématique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/lem/65-1/2-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

摘要

由于Bestvina-Bromberg-Fujiwara,我们简化了投影综合体的建设。为了做到这一点,我们引入了一个更尖锐的贝尔斯托克不等式,并表明它总是可以强制执行的。此外,我们还利用新的设置证明了作用于投影配合物的非圆柱性结果。我们还处理了与投影复形相关的度量空间的拟树,并证明了在这种情况下的非圆柱性准则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Acylindrical actions on projection complexes
We simplify the construction of projection complexes due to Bestvina-Bromberg-Fujiwara. To do so, we introduce a sharper version of the Behrstock inequality, and show that it can always be enforced. Furthermore, we use the new setup to prove acylindricity results for the action on the projection complexes. We also treat quasi-trees of metric spaces associated to projection complexes, and prove an acylindricity criterion in that context as well.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信