带小波的高效C-V模型

Jifei Liu, L. Min
{"title":"带小波的高效C-V模型","authors":"Jifei Liu, L. Min","doi":"10.1109/IHMSC.2012.48","DOIUrl":null,"url":null,"abstract":"We propose an efficient C-V model with wavelet transform to speed up the C-V model evolution. Firstly, the image is decomposed into the downsizing and approximation sub-image with wavelet transform. Then the sub-image composed with the approximation wavelet coefficient matrix is pre-segmented using C-V model to get an approximation curve in a short time. Thirdly, in order to get a fine segmentation, the original image is segmented subtly using C-V model again, of which the initial curve is reconstructed by the result of pre-segmentation. The experimental results validate the effectiveness and feasibility of this model.","PeriodicalId":431532,"journal":{"name":"2012 4th International Conference on Intelligent Human-Machine Systems and Cybernetics","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Efficient C-V Model with Wavelets\",\"authors\":\"Jifei Liu, L. Min\",\"doi\":\"10.1109/IHMSC.2012.48\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose an efficient C-V model with wavelet transform to speed up the C-V model evolution. Firstly, the image is decomposed into the downsizing and approximation sub-image with wavelet transform. Then the sub-image composed with the approximation wavelet coefficient matrix is pre-segmented using C-V model to get an approximation curve in a short time. Thirdly, in order to get a fine segmentation, the original image is segmented subtly using C-V model again, of which the initial curve is reconstructed by the result of pre-segmentation. The experimental results validate the effectiveness and feasibility of this model.\",\"PeriodicalId\":431532,\"journal\":{\"name\":\"2012 4th International Conference on Intelligent Human-Machine Systems and Cybernetics\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 4th International Conference on Intelligent Human-Machine Systems and Cybernetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IHMSC.2012.48\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 4th International Conference on Intelligent Human-Machine Systems and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IHMSC.2012.48","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了加快C-V模型的演化速度,提出了一种基于小波变换的高效C-V模型。首先,用小波变换将图像分解为缩小和逼近子图像;然后利用C-V模型对由近似小波系数矩阵组成的子图像进行预分割,在短时间内得到近似曲线。再次利用C-V模型对原始图像进行精细分割,利用预分割结果重构初始曲线,得到精细分割结果。实验结果验证了该模型的有效性和可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Efficient C-V Model with Wavelets
We propose an efficient C-V model with wavelet transform to speed up the C-V model evolution. Firstly, the image is decomposed into the downsizing and approximation sub-image with wavelet transform. Then the sub-image composed with the approximation wavelet coefficient matrix is pre-segmented using C-V model to get an approximation curve in a short time. Thirdly, in order to get a fine segmentation, the original image is segmented subtly using C-V model again, of which the initial curve is reconstructed by the result of pre-segmentation. The experimental results validate the effectiveness and feasibility of this model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信