微分和积分方程的计算复杂性-基于信息的方法

A. Werschulz
{"title":"微分和积分方程的计算复杂性-基于信息的方法","authors":"A. Werschulz","doi":"10.2307/2153587","DOIUrl":null,"url":null,"abstract":"Introduction EXAMPLE: A TWO-POINT BOUNDARY VALUE PROBLEM: Introduction Error, cost, and complexity A minimal error algorithm Complexity bounds Comparison with the finite element method Standard information Final remarks GENERAL FORMULATION: Introduction Problem formulation Information Model of computation Algorithms, their errors, and their costs Complexity Randomized setting Asymptotic setting THE WORST CASE SETTING: GENERAL RESULTS: Introduction Radius and diameter Complexity Linear problems The residual error criterion ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS IN THE WORST CASE SETTING Introduction Variational elliptic boundary value problems Problem formulation The normed case with arbitrary linear information The normed case with standard information The seminormed case Can adaption ever help? OTHER PROBLEMS IN THE WORST CASE SETTING: Introduction Linear elliptic systems Fredholm problems of the second kind Ill-posed problems Ordinary differential equations THE AVERAGE CASE SETTING: Introduction Some basic measure theory General results for the average case setting Complexity of shift-invariant problems Ill-posed problems The probabilistic setting COMPLEXITY IN THE ASYMPTOTIC AND RANDOMIZED SETTINGS: Introduction Asymptotic setting Randomized setting Appendices Bibliography.","PeriodicalId":156247,"journal":{"name":"Oxford mathematical monographs","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"91","resultStr":"{\"title\":\"Computational complexity of differential and integral equations - an information-based approach\",\"authors\":\"A. Werschulz\",\"doi\":\"10.2307/2153587\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Introduction EXAMPLE: A TWO-POINT BOUNDARY VALUE PROBLEM: Introduction Error, cost, and complexity A minimal error algorithm Complexity bounds Comparison with the finite element method Standard information Final remarks GENERAL FORMULATION: Introduction Problem formulation Information Model of computation Algorithms, their errors, and their costs Complexity Randomized setting Asymptotic setting THE WORST CASE SETTING: GENERAL RESULTS: Introduction Radius and diameter Complexity Linear problems The residual error criterion ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS IN THE WORST CASE SETTING Introduction Variational elliptic boundary value problems Problem formulation The normed case with arbitrary linear information The normed case with standard information The seminormed case Can adaption ever help? OTHER PROBLEMS IN THE WORST CASE SETTING: Introduction Linear elliptic systems Fredholm problems of the second kind Ill-posed problems Ordinary differential equations THE AVERAGE CASE SETTING: Introduction Some basic measure theory General results for the average case setting Complexity of shift-invariant problems Ill-posed problems The probabilistic setting COMPLEXITY IN THE ASYMPTOTIC AND RANDOMIZED SETTINGS: Introduction Asymptotic setting Randomized setting Appendices Bibliography.\",\"PeriodicalId\":156247,\"journal\":{\"name\":\"Oxford mathematical monographs\",\"volume\":\"63 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"91\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oxford mathematical monographs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2307/2153587\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oxford mathematical monographs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2307/2153587","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 91

摘要

示例:两点边值问题:介绍误差、代价和复杂度最小误差算法复杂度界与有限元法的比较标准信息最后备注:一般公式:介绍问题公式计算算法的信息模型、误差和代价复杂度随机设置渐近设置最坏情况设置:一般结果:引入变分椭圆边值问题问题的表述具有任意线性信息的赋范情况具有标准信息的赋范情况半赋范情况自适应有帮助吗?最坏情况下的其他问题:介绍线性椭圆系统Fredholm问题第二类不适定问题常微分方程平均情况设置:介绍一些基本测度理论平均情况设置的一般结果平移不变问题的复杂性不适定问题的概率设置的复杂性在渐近和随机设置:介绍渐近设置随机设置附录参考文献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computational complexity of differential and integral equations - an information-based approach
Introduction EXAMPLE: A TWO-POINT BOUNDARY VALUE PROBLEM: Introduction Error, cost, and complexity A minimal error algorithm Complexity bounds Comparison with the finite element method Standard information Final remarks GENERAL FORMULATION: Introduction Problem formulation Information Model of computation Algorithms, their errors, and their costs Complexity Randomized setting Asymptotic setting THE WORST CASE SETTING: GENERAL RESULTS: Introduction Radius and diameter Complexity Linear problems The residual error criterion ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS IN THE WORST CASE SETTING Introduction Variational elliptic boundary value problems Problem formulation The normed case with arbitrary linear information The normed case with standard information The seminormed case Can adaption ever help? OTHER PROBLEMS IN THE WORST CASE SETTING: Introduction Linear elliptic systems Fredholm problems of the second kind Ill-posed problems Ordinary differential equations THE AVERAGE CASE SETTING: Introduction Some basic measure theory General results for the average case setting Complexity of shift-invariant problems Ill-posed problems The probabilistic setting COMPLEXITY IN THE ASYMPTOTIC AND RANDOMIZED SETTINGS: Introduction Asymptotic setting Randomized setting Appendices Bibliography.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信