Yuxiao Ye, Chi Harold Liu, Zipeng Dai, Jianxin R. Zhao, Ye Yuan, Guoren Wang, Jian Tang
{"title":"基于多智能体深度强化学习的地空空间众包个性与协作研究","authors":"Yuxiao Ye, Chi Harold Liu, Zipeng Dai, Jianxin R. Zhao, Ye Yuan, Guoren Wang, Jian Tang","doi":"10.1109/ICDE55515.2023.00023","DOIUrl":null,"url":null,"abstract":"Spatial crowdsourcing (SC) has proven as a promising paradigm to employ human workers to collect data from diverse Point-of-Interests (PoIs) in a given area. Different from using human participants, we propose a novel air-ground SC scenario to fully take advantage of benefits brought by unmanned vehicles (UVs), including unmanned aerial vehicles (UAVs) with controllable high mobility and unmanned ground vehicles (UGVs) with abundant sensing resources. The objective is to maximize the amount of collected data, geographical fairness among all PoIs, and minimize the data loss and energy consumption, integrated as one single metric called \"efficiency\". We explicitly explore both individuality and cooperation natures of UAVs and UGVs by proposing a multi-agent deep reinforcement learning (MADRL) framework called \"h/i-MADRL\". Compatible with all multi-agent actor-critic methods, h/i-MADRL adds two novel plug-in modules: (a) h-CoPO, which models the cooperation preference among heterogeneous UAVs and UGVs; and (b) i-EOI, which extracts the UV’s individuality and encourages a better spatial division of work by adding intrinsic reward. Extensive experimental results on two real-world datasets on Purdue and NCSU campuses confirm that h/i-MADRL achieves a better exploration of both individuality and cooperation simultaneously, resulting in a better performance in terms of efficiency compared with five baselines.","PeriodicalId":434744,"journal":{"name":"2023 IEEE 39th International Conference on Data Engineering (ICDE)","volume":"92 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring both Individuality and Cooperation for Air-Ground Spatial Crowdsourcing by Multi-Agent Deep Reinforcement Learning\",\"authors\":\"Yuxiao Ye, Chi Harold Liu, Zipeng Dai, Jianxin R. Zhao, Ye Yuan, Guoren Wang, Jian Tang\",\"doi\":\"10.1109/ICDE55515.2023.00023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spatial crowdsourcing (SC) has proven as a promising paradigm to employ human workers to collect data from diverse Point-of-Interests (PoIs) in a given area. Different from using human participants, we propose a novel air-ground SC scenario to fully take advantage of benefits brought by unmanned vehicles (UVs), including unmanned aerial vehicles (UAVs) with controllable high mobility and unmanned ground vehicles (UGVs) with abundant sensing resources. The objective is to maximize the amount of collected data, geographical fairness among all PoIs, and minimize the data loss and energy consumption, integrated as one single metric called \\\"efficiency\\\". We explicitly explore both individuality and cooperation natures of UAVs and UGVs by proposing a multi-agent deep reinforcement learning (MADRL) framework called \\\"h/i-MADRL\\\". Compatible with all multi-agent actor-critic methods, h/i-MADRL adds two novel plug-in modules: (a) h-CoPO, which models the cooperation preference among heterogeneous UAVs and UGVs; and (b) i-EOI, which extracts the UV’s individuality and encourages a better spatial division of work by adding intrinsic reward. Extensive experimental results on two real-world datasets on Purdue and NCSU campuses confirm that h/i-MADRL achieves a better exploration of both individuality and cooperation simultaneously, resulting in a better performance in terms of efficiency compared with five baselines.\",\"PeriodicalId\":434744,\"journal\":{\"name\":\"2023 IEEE 39th International Conference on Data Engineering (ICDE)\",\"volume\":\"92 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE 39th International Conference on Data Engineering (ICDE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDE55515.2023.00023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 39th International Conference on Data Engineering (ICDE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE55515.2023.00023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Exploring both Individuality and Cooperation for Air-Ground Spatial Crowdsourcing by Multi-Agent Deep Reinforcement Learning
Spatial crowdsourcing (SC) has proven as a promising paradigm to employ human workers to collect data from diverse Point-of-Interests (PoIs) in a given area. Different from using human participants, we propose a novel air-ground SC scenario to fully take advantage of benefits brought by unmanned vehicles (UVs), including unmanned aerial vehicles (UAVs) with controllable high mobility and unmanned ground vehicles (UGVs) with abundant sensing resources. The objective is to maximize the amount of collected data, geographical fairness among all PoIs, and minimize the data loss and energy consumption, integrated as one single metric called "efficiency". We explicitly explore both individuality and cooperation natures of UAVs and UGVs by proposing a multi-agent deep reinforcement learning (MADRL) framework called "h/i-MADRL". Compatible with all multi-agent actor-critic methods, h/i-MADRL adds two novel plug-in modules: (a) h-CoPO, which models the cooperation preference among heterogeneous UAVs and UGVs; and (b) i-EOI, which extracts the UV’s individuality and encourages a better spatial division of work by adding intrinsic reward. Extensive experimental results on two real-world datasets on Purdue and NCSU campuses confirm that h/i-MADRL achieves a better exploration of both individuality and cooperation simultaneously, resulting in a better performance in terms of efficiency compared with five baselines.