利用新设计的高灵敏度模糊PID控制器增强太阳能转换最大功率点跟踪

A. A. Gizi, Baqer Turki Attyah, Adnan Allawi Fitait, A. Yahya, A. Alzaidi
{"title":"利用新设计的高灵敏度模糊PID控制器增强太阳能转换最大功率点跟踪","authors":"A. A. Gizi, Baqer Turki Attyah, Adnan Allawi Fitait, A. Yahya, A. Alzaidi","doi":"10.1109/PECON.2018.8684155","DOIUrl":null,"url":null,"abstract":"Improvement of the maximum power point tracking (MPPT) system for solar chargers and rectifiers remains challenging. We propose a novel parametric design of high-sensitive fuzzy (HSF) proportional-integral-derivative controller (PIDC) for efficient functioning of the MPPT system. This design is based on a synergistic combination of the genetic algorithm (GA), radial basis function neural network (RBF-NN) and Sugeno fuzzy logic (SFL) schemes. The best parameters of MPPT and PIDC are determined via optimization, where RBF-NN is tuned using GA to achieve the optimal solution. Furthermore, RBF-NN is used to enhance the PID parameters (obtained from GA) for designing HSFL-PIDC of the MPPT system. The entire scheme is further tuned by solar parameters under various operating conditions to improve the solar performance in terms of charging and rectifying. The performance of the proposed analog-implemented MPPT controller is evaluated by interfacing it with a hardware prototype of dual photovoltaic (PV) system. The achieved system is demonstrated to be efficient and robust in improving solar charging and rectifying capacity.","PeriodicalId":278078,"journal":{"name":"2018 IEEE 7th International Conference on Power and Energy (PECon)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancement of Maximum Power Point Traking of Solar Energy Conversion Using a Newly Designed High-Sensitive Fuzzy PID Controller\",\"authors\":\"A. A. Gizi, Baqer Turki Attyah, Adnan Allawi Fitait, A. Yahya, A. Alzaidi\",\"doi\":\"10.1109/PECON.2018.8684155\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Improvement of the maximum power point tracking (MPPT) system for solar chargers and rectifiers remains challenging. We propose a novel parametric design of high-sensitive fuzzy (HSF) proportional-integral-derivative controller (PIDC) for efficient functioning of the MPPT system. This design is based on a synergistic combination of the genetic algorithm (GA), radial basis function neural network (RBF-NN) and Sugeno fuzzy logic (SFL) schemes. The best parameters of MPPT and PIDC are determined via optimization, where RBF-NN is tuned using GA to achieve the optimal solution. Furthermore, RBF-NN is used to enhance the PID parameters (obtained from GA) for designing HSFL-PIDC of the MPPT system. The entire scheme is further tuned by solar parameters under various operating conditions to improve the solar performance in terms of charging and rectifying. The performance of the proposed analog-implemented MPPT controller is evaluated by interfacing it with a hardware prototype of dual photovoltaic (PV) system. The achieved system is demonstrated to be efficient and robust in improving solar charging and rectifying capacity.\",\"PeriodicalId\":278078,\"journal\":{\"name\":\"2018 IEEE 7th International Conference on Power and Energy (PECon)\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 7th International Conference on Power and Energy (PECon)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PECON.2018.8684155\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 7th International Conference on Power and Energy (PECon)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PECON.2018.8684155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

太阳能充电器和整流器最大功率点跟踪(MPPT)系统的改进仍然具有挑战性。我们提出了一种新的参数化设计的高灵敏度模糊(HSF)比例-积分-导数控制器(PIDC),以使MPPT系统有效地工作。本设计基于遗传算法(GA)、径向基函数神经网络(RBF-NN)和Sugeno模糊逻辑(SFL)方案的协同组合。通过优化确定MPPT和PIDC的最佳参数,其中RBF-NN使用遗传算法进行调谐以获得最优解。在此基础上,利用RBF-NN对遗传算法得到的PID参数进行增强,设计了MPPT系统的HSFL-PIDC。整个方案进一步根据各种运行条件下的太阳能参数进行调整,以提高太阳能在充电和整流方面的性能。通过将模拟实现的MPPT控制器与双光伏(PV)系统的硬件原型接口,对其性能进行了评估。该系统在提高太阳能充电和整流能力方面具有良好的鲁棒性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancement of Maximum Power Point Traking of Solar Energy Conversion Using a Newly Designed High-Sensitive Fuzzy PID Controller
Improvement of the maximum power point tracking (MPPT) system for solar chargers and rectifiers remains challenging. We propose a novel parametric design of high-sensitive fuzzy (HSF) proportional-integral-derivative controller (PIDC) for efficient functioning of the MPPT system. This design is based on a synergistic combination of the genetic algorithm (GA), radial basis function neural network (RBF-NN) and Sugeno fuzzy logic (SFL) schemes. The best parameters of MPPT and PIDC are determined via optimization, where RBF-NN is tuned using GA to achieve the optimal solution. Furthermore, RBF-NN is used to enhance the PID parameters (obtained from GA) for designing HSFL-PIDC of the MPPT system. The entire scheme is further tuned by solar parameters under various operating conditions to improve the solar performance in terms of charging and rectifying. The performance of the proposed analog-implemented MPPT controller is evaluated by interfacing it with a hardware prototype of dual photovoltaic (PV) system. The achieved system is demonstrated to be efficient and robust in improving solar charging and rectifying capacity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信