Johannes Zeppenfeld, Abdelmajid Bouajila, A. Herkersdorf, W. Stechele
{"title":"芯片自主系统的可扩展性和可靠性研究","authors":"Johannes Zeppenfeld, Abdelmajid Bouajila, A. Herkersdorf, W. Stechele","doi":"10.1109/ISORCW.2010.13","DOIUrl":null,"url":null,"abstract":"Autonomic Systems on Chip provision VLSI systems with the capabilities of self-organization, self-healing and self-optimization, thereby allowing them to adapt to their environment and improve their functionality through run-time learning. This paper presents our current status of work on autonomic SoC architectures, beginning with a robust, self-correcting processor data path architecture and progressing to reinforcement machine learning techniques for self-optimization and self-organization at run time. An outlook of our future work and upcoming challenges in regard to autonomic systems on chip is then presented as a basis for discussion at the SORT workshop, and with the organic computing community in general.","PeriodicalId":174806,"journal":{"name":"2010 13th IEEE International Symposium on Object/Component/Service-Oriented Real-Time Distributed Computing Workshops","volume":"03 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Towards Scalability and Reliability of Autonomic Systems on Chip\",\"authors\":\"Johannes Zeppenfeld, Abdelmajid Bouajila, A. Herkersdorf, W. Stechele\",\"doi\":\"10.1109/ISORCW.2010.13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Autonomic Systems on Chip provision VLSI systems with the capabilities of self-organization, self-healing and self-optimization, thereby allowing them to adapt to their environment and improve their functionality through run-time learning. This paper presents our current status of work on autonomic SoC architectures, beginning with a robust, self-correcting processor data path architecture and progressing to reinforcement machine learning techniques for self-optimization and self-organization at run time. An outlook of our future work and upcoming challenges in regard to autonomic systems on chip is then presented as a basis for discussion at the SORT workshop, and with the organic computing community in general.\",\"PeriodicalId\":174806,\"journal\":{\"name\":\"2010 13th IEEE International Symposium on Object/Component/Service-Oriented Real-Time Distributed Computing Workshops\",\"volume\":\"03 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 13th IEEE International Symposium on Object/Component/Service-Oriented Real-Time Distributed Computing Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISORCW.2010.13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 13th IEEE International Symposium on Object/Component/Service-Oriented Real-Time Distributed Computing Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISORCW.2010.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Towards Scalability and Reliability of Autonomic Systems on Chip
Autonomic Systems on Chip provision VLSI systems with the capabilities of self-organization, self-healing and self-optimization, thereby allowing them to adapt to their environment and improve their functionality through run-time learning. This paper presents our current status of work on autonomic SoC architectures, beginning with a robust, self-correcting processor data path architecture and progressing to reinforcement machine learning techniques for self-optimization and self-organization at run time. An outlook of our future work and upcoming challenges in regard to autonomic systems on chip is then presented as a basis for discussion at the SORT workshop, and with the organic computing community in general.