完全二次空间的一种推广

Abeer Al Ahmadieh, Mario Kummer, Miruna-Stefana Sorea
{"title":"完全二次空间的一种推广","authors":"Abeer Al Ahmadieh, Mario Kummer, Miruna-Stefana Sorea","doi":"10.4418/2021.76.2.9","DOIUrl":null,"url":null,"abstract":"To any homogeneous polynomial $h$ we naturally associate a variety $\\Omega_h$ which maps birationally onto the graph $\\Gamma_h$ of the gradient map $\\nabla h$ and which agrees with the space of complete quadrics when $h$ is the determinant of the generic symmetric matrix. We give a sufficient criterion for $\\Omega_h$ being smooth which applies for example when $h$ is an elementary symmetric polynomial. In this case $\\Omega_h$ is a smooth toric variety associated to a certain generalized permutohedron. We also give examples when $\\Omega_h$ is not smooth.","PeriodicalId":278201,"journal":{"name":"arXiv: Algebraic Geometry","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A generalization of the space of complete quadrics\",\"authors\":\"Abeer Al Ahmadieh, Mario Kummer, Miruna-Stefana Sorea\",\"doi\":\"10.4418/2021.76.2.9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To any homogeneous polynomial $h$ we naturally associate a variety $\\\\Omega_h$ which maps birationally onto the graph $\\\\Gamma_h$ of the gradient map $\\\\nabla h$ and which agrees with the space of complete quadrics when $h$ is the determinant of the generic symmetric matrix. We give a sufficient criterion for $\\\\Omega_h$ being smooth which applies for example when $h$ is an elementary symmetric polynomial. In this case $\\\\Omega_h$ is a smooth toric variety associated to a certain generalized permutohedron. We also give examples when $\\\\Omega_h$ is not smooth.\",\"PeriodicalId\":278201,\"journal\":{\"name\":\"arXiv: Algebraic Geometry\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Algebraic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4418/2021.76.2.9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4418/2021.76.2.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

对于任何齐次多项式$h$,我们自然地将一个变量$\Omega_h$关联到梯度映射$\nabla h$的图形$\Gamma_h$上,并且当$h$是一般对称矩阵的行列式时,它与完全二次曲面的空间一致。给出了$\Omega_h$光滑的充分判据,该判据适用于$h$为初等对称多项式的情况。在这种情况下$\Omega_h$是与某个广义复面体相关的光滑环面变异体。我们也给出了$\Omega_h$不顺利的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A generalization of the space of complete quadrics
To any homogeneous polynomial $h$ we naturally associate a variety $\Omega_h$ which maps birationally onto the graph $\Gamma_h$ of the gradient map $\nabla h$ and which agrees with the space of complete quadrics when $h$ is the determinant of the generic symmetric matrix. We give a sufficient criterion for $\Omega_h$ being smooth which applies for example when $h$ is an elementary symmetric polynomial. In this case $\Omega_h$ is a smooth toric variety associated to a certain generalized permutohedron. We also give examples when $\Omega_h$ is not smooth.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信