超球映射器:超立方体嵌入问题的非线性规划方法

J. Antonio, R. C. Metzger
{"title":"超球映射器:超立方体嵌入问题的非线性规划方法","authors":"J. Antonio, R. C. Metzger","doi":"10.1109/IPPS.1993.262820","DOIUrl":null,"url":null,"abstract":"A nonlinear programming approach is introduced for solving the hypercube embedding problem. The basic idea of the proposed approach is to approximate the discrete space of an n-dimensional hypercube, i.e. (z:z in (0,1)/sup n/), with the continuous space of an n-dimensional hypersphere, i.e. (x:x in R/sup n/ and mod mod x mod mod /sup 2/=1). The mapping problem is initially solved in the continuous domain by employing the gradient projection technique to a continuously differentiable objective function. The optimal process 'locations' from the solution of the continuous hypersphere mapping problem are then discretized onto the n-dimensional hypercube. The proposed approach can solve, directly, the problem of mapping P processes onto N nodes for the general case where P>N. In contrast, competing embedding heuristics from the literature can produce only one-to-one mappings and cannot, therefore, be directly applied when P>N.<<ETX>>","PeriodicalId":248927,"journal":{"name":"[1993] Proceedings Seventh International Parallel Processing Symposium","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Hypersphere Mapper: a nonlinear programming approach to the hypercube embedding problem\",\"authors\":\"J. Antonio, R. C. Metzger\",\"doi\":\"10.1109/IPPS.1993.262820\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A nonlinear programming approach is introduced for solving the hypercube embedding problem. The basic idea of the proposed approach is to approximate the discrete space of an n-dimensional hypercube, i.e. (z:z in (0,1)/sup n/), with the continuous space of an n-dimensional hypersphere, i.e. (x:x in R/sup n/ and mod mod x mod mod /sup 2/=1). The mapping problem is initially solved in the continuous domain by employing the gradient projection technique to a continuously differentiable objective function. The optimal process 'locations' from the solution of the continuous hypersphere mapping problem are then discretized onto the n-dimensional hypercube. The proposed approach can solve, directly, the problem of mapping P processes onto N nodes for the general case where P>N. In contrast, competing embedding heuristics from the literature can produce only one-to-one mappings and cannot, therefore, be directly applied when P>N.<<ETX>>\",\"PeriodicalId\":248927,\"journal\":{\"name\":\"[1993] Proceedings Seventh International Parallel Processing Symposium\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1993] Proceedings Seventh International Parallel Processing Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPPS.1993.262820\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1993] Proceedings Seventh International Parallel Processing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPPS.1993.262820","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

介绍了一种求解超立方体嵌入问题的非线性规划方法。该方法的基本思想是将n维超立方体的离散空间(z:z in (0,1)/sup n/)近似为n维超球的连续空间(x:x in R/sup n/ and mod mod x mod mod /sup 2/=1)。采用梯度投影技术对连续可微目标函数在连续域内的映射问题进行了初步解决。然后将连续超球映射问题解的最优过程“位置”离散到n维超立方体上。对于P>N的一般情况,该方法可以直接解决P个过程映射到N个节点的问题。相反,来自文献的竞争性嵌入启发式只能产生一对一映射,因此,当P> n > >时,不能直接应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hypersphere Mapper: a nonlinear programming approach to the hypercube embedding problem
A nonlinear programming approach is introduced for solving the hypercube embedding problem. The basic idea of the proposed approach is to approximate the discrete space of an n-dimensional hypercube, i.e. (z:z in (0,1)/sup n/), with the continuous space of an n-dimensional hypersphere, i.e. (x:x in R/sup n/ and mod mod x mod mod /sup 2/=1). The mapping problem is initially solved in the continuous domain by employing the gradient projection technique to a continuously differentiable objective function. The optimal process 'locations' from the solution of the continuous hypersphere mapping problem are then discretized onto the n-dimensional hypercube. The proposed approach can solve, directly, the problem of mapping P processes onto N nodes for the general case where P>N. In contrast, competing embedding heuristics from the literature can produce only one-to-one mappings and cannot, therefore, be directly applied when P>N.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信