{"title":"基于正则化自适应非负潜因子分析的推荐系统模型","authors":"Jiufang Chen, Xin Luo, Mengchu Zhou","doi":"10.1109/ICHMS49158.2020.9209550","DOIUrl":null,"url":null,"abstract":"Non-negative latent factor analysis (NLFA) can high-efficiently extract useful information from high dimensional and sparse (HiDS) matrices often encountered in recommender systems (RSs). However, an NLFA-based model requires careful tuning of regularization coefficients, which is highly expensive in both time and computation. To address this issue, this study proposes an adaptive NLFA-based model whose regularization coefficients become self-adaptive via particle swarm optimization. Experimental results on two HiDS matrices indicate that owing to such self-adaptation, it outperforms an NLFA model in terms of both convergence rate and prediction accuracy for missing data estimation.","PeriodicalId":132917,"journal":{"name":"2020 IEEE International Conference on Human-Machine Systems (ICHMS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Regularization-adaptive Non-negative Latent Factor Analysis-based Model For Recommender Systems\",\"authors\":\"Jiufang Chen, Xin Luo, Mengchu Zhou\",\"doi\":\"10.1109/ICHMS49158.2020.9209550\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Non-negative latent factor analysis (NLFA) can high-efficiently extract useful information from high dimensional and sparse (HiDS) matrices often encountered in recommender systems (RSs). However, an NLFA-based model requires careful tuning of regularization coefficients, which is highly expensive in both time and computation. To address this issue, this study proposes an adaptive NLFA-based model whose regularization coefficients become self-adaptive via particle swarm optimization. Experimental results on two HiDS matrices indicate that owing to such self-adaptation, it outperforms an NLFA model in terms of both convergence rate and prediction accuracy for missing data estimation.\",\"PeriodicalId\":132917,\"journal\":{\"name\":\"2020 IEEE International Conference on Human-Machine Systems (ICHMS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Human-Machine Systems (ICHMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICHMS49158.2020.9209550\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Human-Machine Systems (ICHMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICHMS49158.2020.9209550","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Regularization-adaptive Non-negative Latent Factor Analysis-based Model For Recommender Systems
Non-negative latent factor analysis (NLFA) can high-efficiently extract useful information from high dimensional and sparse (HiDS) matrices often encountered in recommender systems (RSs). However, an NLFA-based model requires careful tuning of regularization coefficients, which is highly expensive in both time and computation. To address this issue, this study proposes an adaptive NLFA-based model whose regularization coefficients become self-adaptive via particle swarm optimization. Experimental results on two HiDS matrices indicate that owing to such self-adaptation, it outperforms an NLFA model in terms of both convergence rate and prediction accuracy for missing data estimation.