最简调和问题在重复-损失-合并模型下的整数线性规划解

Morgan Carothers, Joseph Gardi, Gianluca Gross, Tatsuki Kuze, Nuo Liu, Fiona Plunkett, Julia Qian, Yi-Chieh Wu
{"title":"最简调和问题在重复-损失-合并模型下的整数线性规划解","authors":"Morgan Carothers, Joseph Gardi, Gianluca Gross, Tatsuki Kuze, Nuo Liu, Fiona Plunkett, Julia Qian, Yi-Chieh Wu","doi":"10.1145/3388440.3412474","DOIUrl":null,"url":null,"abstract":"Given a gene tree, a species tree, and an association between their leaves, the maximum parsimony reconciliation (MPR) problem seeks to find a mapping of the gene tree to the species tree that explains their incongruity using a biological model of evolutionary events. Unfortunately, when simultaneously accounting for gene duplication, gene loss, and coalescence, the MPR problem is NP-hard. While an exact algorithm exists, it can be problematic to use in practice due to time and memory requirements. In this work, we present an integer linear programming (ILP) formulation for solving the MPR problem when considering duplications, losses, and coalescence. Our experimental results on a simulated data set of 12 Drosophila species shows that our new algorithm is both accurate and scalable. Furthermore, in contrast to the existing exact algorithm, our formulation allows users to limit the maximum runtime and thus trade-off accuracy and scalability, making it an attractive choice for phylogenetic pipelines.","PeriodicalId":411338,"journal":{"name":"Proceedings of the 11th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Integer Linear Programming Solution for the Most Parsimonious Reconciliation Problem under the Duplication-Loss-Coalescence Model\",\"authors\":\"Morgan Carothers, Joseph Gardi, Gianluca Gross, Tatsuki Kuze, Nuo Liu, Fiona Plunkett, Julia Qian, Yi-Chieh Wu\",\"doi\":\"10.1145/3388440.3412474\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given a gene tree, a species tree, and an association between their leaves, the maximum parsimony reconciliation (MPR) problem seeks to find a mapping of the gene tree to the species tree that explains their incongruity using a biological model of evolutionary events. Unfortunately, when simultaneously accounting for gene duplication, gene loss, and coalescence, the MPR problem is NP-hard. While an exact algorithm exists, it can be problematic to use in practice due to time and memory requirements. In this work, we present an integer linear programming (ILP) formulation for solving the MPR problem when considering duplications, losses, and coalescence. Our experimental results on a simulated data set of 12 Drosophila species shows that our new algorithm is both accurate and scalable. Furthermore, in contrast to the existing exact algorithm, our formulation allows users to limit the maximum runtime and thus trade-off accuracy and scalability, making it an attractive choice for phylogenetic pipelines.\",\"PeriodicalId\":411338,\"journal\":{\"name\":\"Proceedings of the 11th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 11th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3388440.3412474\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3388440.3412474","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

给定一个基因树,一个物种树,以及它们的叶子之间的关联,最大简约和解(MPR)问题寻求找到一个基因树到物种树的映射,用进化事件的生物学模型来解释它们的不一致性。不幸的是,当同时考虑基因复制、基因丢失和合并时,MPR问题是np困难的。虽然存在精确的算法,但由于时间和内存需求,在实践中使用它可能会有问题。在这项工作中,我们提出了一个整数线性规划(ILP)公式,用于在考虑重复,损失和合并时解决MPR问题。我们在12种果蝇的模拟数据集上的实验结果表明,我们的新算法既准确又可扩展。此外,与现有的精确算法相比,我们的公式允许用户限制最大运行时间,从而权衡准确性和可扩展性,使其成为系统发育管道的有吸引力的选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Integer Linear Programming Solution for the Most Parsimonious Reconciliation Problem under the Duplication-Loss-Coalescence Model
Given a gene tree, a species tree, and an association between their leaves, the maximum parsimony reconciliation (MPR) problem seeks to find a mapping of the gene tree to the species tree that explains their incongruity using a biological model of evolutionary events. Unfortunately, when simultaneously accounting for gene duplication, gene loss, and coalescence, the MPR problem is NP-hard. While an exact algorithm exists, it can be problematic to use in practice due to time and memory requirements. In this work, we present an integer linear programming (ILP) formulation for solving the MPR problem when considering duplications, losses, and coalescence. Our experimental results on a simulated data set of 12 Drosophila species shows that our new algorithm is both accurate and scalable. Furthermore, in contrast to the existing exact algorithm, our formulation allows users to limit the maximum runtime and thus trade-off accuracy and scalability, making it an attractive choice for phylogenetic pipelines.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信