混合网格划分、粗糙集理论和特征选择在数据集分类中的模糊规则生成

Ogange Lawrence
{"title":"混合网格划分、粗糙集理论和特征选择在数据集分类中的模糊规则生成","authors":"Ogange Lawrence","doi":"10.35335/emod.v13i1.20","DOIUrl":null,"url":null,"abstract":"This research investigates the hybridization of Grid Partitioning, Rough Set Theory, and Feature Selection for Fuzzy Rule Generation in Dataset Classification. The objective is to improve classification accuracy and interpretability by integrating multiple techniques. Grid partitioning is employed to divide the dataset into regions, allowing localized analysis. Rough set theory is utilized for attribute reduction and feature selection, identifying informative features within each region. Fuzzy rule generation is applied to generate interpretable classification rules using linguistic terms and membership functions. The hybrid model is optimized using metaheuristic algorithms to maximize classification performance. The research demonstrates the potential of the hybrid approach through experiments on the Iris flower dataset. The findings reveal improved classification accuracy, enhanced interpretability, and effective handling of complex datasets. The research contributes to the field by integrating these techniques into a cohesive framework and highlights the importance of parameter settings, computational complexity, and real-world applications. Future work should address these limitations and validate the approach on diverse datasets. The hybridization of Grid Partitioning, Rough Set Theory, and Feature Selection for Fuzzy Rule Generation holds promise for advancing classification models in various domains","PeriodicalId":262913,"journal":{"name":"International Journal of Enterprise Modelling","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybridizing grid partitioning, rough set theory, and feature selection for fuzzy rule generation in dataset classification\",\"authors\":\"Ogange Lawrence\",\"doi\":\"10.35335/emod.v13i1.20\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research investigates the hybridization of Grid Partitioning, Rough Set Theory, and Feature Selection for Fuzzy Rule Generation in Dataset Classification. The objective is to improve classification accuracy and interpretability by integrating multiple techniques. Grid partitioning is employed to divide the dataset into regions, allowing localized analysis. Rough set theory is utilized for attribute reduction and feature selection, identifying informative features within each region. Fuzzy rule generation is applied to generate interpretable classification rules using linguistic terms and membership functions. The hybrid model is optimized using metaheuristic algorithms to maximize classification performance. The research demonstrates the potential of the hybrid approach through experiments on the Iris flower dataset. The findings reveal improved classification accuracy, enhanced interpretability, and effective handling of complex datasets. The research contributes to the field by integrating these techniques into a cohesive framework and highlights the importance of parameter settings, computational complexity, and real-world applications. Future work should address these limitations and validate the approach on diverse datasets. The hybridization of Grid Partitioning, Rough Set Theory, and Feature Selection for Fuzzy Rule Generation holds promise for advancing classification models in various domains\",\"PeriodicalId\":262913,\"journal\":{\"name\":\"International Journal of Enterprise Modelling\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Enterprise Modelling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35335/emod.v13i1.20\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Enterprise Modelling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35335/emod.v13i1.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究将网格划分、粗糙集理论和特征选择相结合,用于数据集分类中的模糊规则生成。目标是通过集成多种技术来提高分类的准确性和可解释性。采用网格划分将数据集划分为区域,实现局部分析。利用粗糙集理论进行属性约简和特征选择,识别每个区域内的信息特征。模糊规则生成是利用语言术语和隶属函数生成可解释的分类规则。采用元启发式算法对混合模型进行优化,使分类性能最大化。该研究通过鸢尾花数据集的实验证明了混合方法的潜力。研究结果揭示了分类准确性的提高、可解释性的增强以及对复杂数据集的有效处理。该研究通过将这些技术集成到一个有凝聚力的框架中,并强调了参数设置、计算复杂性和实际应用的重要性,从而为该领域做出了贡献。未来的工作应该解决这些局限性,并在不同的数据集上验证该方法。网格划分、粗糙集理论和模糊规则生成特征选择的融合有望在各个领域推进分类模型
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hybridizing grid partitioning, rough set theory, and feature selection for fuzzy rule generation in dataset classification
This research investigates the hybridization of Grid Partitioning, Rough Set Theory, and Feature Selection for Fuzzy Rule Generation in Dataset Classification. The objective is to improve classification accuracy and interpretability by integrating multiple techniques. Grid partitioning is employed to divide the dataset into regions, allowing localized analysis. Rough set theory is utilized for attribute reduction and feature selection, identifying informative features within each region. Fuzzy rule generation is applied to generate interpretable classification rules using linguistic terms and membership functions. The hybrid model is optimized using metaheuristic algorithms to maximize classification performance. The research demonstrates the potential of the hybrid approach through experiments on the Iris flower dataset. The findings reveal improved classification accuracy, enhanced interpretability, and effective handling of complex datasets. The research contributes to the field by integrating these techniques into a cohesive framework and highlights the importance of parameter settings, computational complexity, and real-world applications. Future work should address these limitations and validate the approach on diverse datasets. The hybridization of Grid Partitioning, Rough Set Theory, and Feature Selection for Fuzzy Rule Generation holds promise for advancing classification models in various domains
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信