卷积神经网络在肾癌诊断中的作用综述

Andrei-Daniel Andreiana, C. Bǎdicǎ, Eugenia Ganea, B. Andreiana
{"title":"卷积神经网络在肾癌诊断中的作用综述","authors":"Andrei-Daniel Andreiana, C. Bǎdicǎ, Eugenia Ganea, B. Andreiana","doi":"10.1109/ICSTCC55426.2022.9931820","DOIUrl":null,"url":null,"abstract":"Accurate diagnosis using histopathology images re-quires experienced pathologists, a large amount of work and time. Recent studies show that AI could be a solution to help pathologist by offering a fast and reliable help for setting a diagnosis. This paper offers a review of the latest advancements in renal cancer diagnosis using advanced AI methods, especially Convolutional Neural Networks. It includes both Computer Aided Diagnosis solutions and algorithms or frameworks that use histopathology images as input. It provides extensive data about the input databases, preprocessing methods, feature extraction, classifier architectures and results quantification. Further, it elaborates on the type of classification each algorithm offers, ranging from segmentation to benign-malignant classification and up to renal cancer subtypes differentiation or Fuhrman grade determination.","PeriodicalId":220845,"journal":{"name":"2022 26th International Conference on System Theory, Control and Computing (ICSTCC)","volume":"29 3-4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Review of the Impact of Convolutional Neural Networks in the Process of Renal Cancer Diagnosis\",\"authors\":\"Andrei-Daniel Andreiana, C. Bǎdicǎ, Eugenia Ganea, B. Andreiana\",\"doi\":\"10.1109/ICSTCC55426.2022.9931820\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate diagnosis using histopathology images re-quires experienced pathologists, a large amount of work and time. Recent studies show that AI could be a solution to help pathologist by offering a fast and reliable help for setting a diagnosis. This paper offers a review of the latest advancements in renal cancer diagnosis using advanced AI methods, especially Convolutional Neural Networks. It includes both Computer Aided Diagnosis solutions and algorithms or frameworks that use histopathology images as input. It provides extensive data about the input databases, preprocessing methods, feature extraction, classifier architectures and results quantification. Further, it elaborates on the type of classification each algorithm offers, ranging from segmentation to benign-malignant classification and up to renal cancer subtypes differentiation or Fuhrman grade determination.\",\"PeriodicalId\":220845,\"journal\":{\"name\":\"2022 26th International Conference on System Theory, Control and Computing (ICSTCC)\",\"volume\":\"29 3-4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 26th International Conference on System Theory, Control and Computing (ICSTCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSTCC55426.2022.9931820\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 26th International Conference on System Theory, Control and Computing (ICSTCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSTCC55426.2022.9931820","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

使用组织病理学图像进行准确诊断需要经验丰富的病理学家,大量的工作和时间。最近的研究表明,通过提供快速可靠的诊断帮助,人工智能可以成为帮助病理学家的一种解决方案。本文综述了利用先进的人工智能方法,特别是卷积神经网络进行肾癌诊断的最新进展。它包括计算机辅助诊断解决方案和使用组织病理学图像作为输入的算法或框架。它提供了大量关于输入数据库、预处理方法、特征提取、分类器架构和结果量化的数据。此外,它详细阐述了每种算法提供的分类类型,从分割到良恶性分类,再到肾癌亚型分化或Fuhrman分级确定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Review of the Impact of Convolutional Neural Networks in the Process of Renal Cancer Diagnosis
Accurate diagnosis using histopathology images re-quires experienced pathologists, a large amount of work and time. Recent studies show that AI could be a solution to help pathologist by offering a fast and reliable help for setting a diagnosis. This paper offers a review of the latest advancements in renal cancer diagnosis using advanced AI methods, especially Convolutional Neural Networks. It includes both Computer Aided Diagnosis solutions and algorithms or frameworks that use histopathology images as input. It provides extensive data about the input databases, preprocessing methods, feature extraction, classifier architectures and results quantification. Further, it elaborates on the type of classification each algorithm offers, ranging from segmentation to benign-malignant classification and up to renal cancer subtypes differentiation or Fuhrman grade determination.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信