分布式仿真中能量消耗的实证研究

R. Fujimoto, A. Biswas
{"title":"分布式仿真中能量消耗的实证研究","authors":"R. Fujimoto, A. Biswas","doi":"10.1109/DS-RT.2015.32","DOIUrl":null,"url":null,"abstract":"Power and energy consumption are important concerns in the design of high performance and mobile computing systems, but have not been widely considered in the design of parallel and distributed simulations. The importance of these factors is discussed and metrics for power and energy overhead in parallel and distributed simulations are proposed. Factors affecting the energy consumed by synchronization algorithms and software architectures are examined. An experimental study is presented examining energy consumption of the well-known Chandy/Misra/Bryant algorithm executing on a peer-to-peer mobile computing platform and compared with a centralized client-server approach using the YAWNS synchronization algorithm. Initial results concerning queueing network simulations are also presented. The results of this study suggest that existing distributed simulation algorithms require a significant amount of additional energy compared to a sequential execution. Further, different synchronization algorithms can yield different energy consumption behaviors.","PeriodicalId":207275,"journal":{"name":"2015 IEEE/ACM 19th International Symposium on Distributed Simulation and Real Time Applications (DS-RT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"An Empirical Study of Energy Consumption in Distributed Simulations\",\"authors\":\"R. Fujimoto, A. Biswas\",\"doi\":\"10.1109/DS-RT.2015.32\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Power and energy consumption are important concerns in the design of high performance and mobile computing systems, but have not been widely considered in the design of parallel and distributed simulations. The importance of these factors is discussed and metrics for power and energy overhead in parallel and distributed simulations are proposed. Factors affecting the energy consumed by synchronization algorithms and software architectures are examined. An experimental study is presented examining energy consumption of the well-known Chandy/Misra/Bryant algorithm executing on a peer-to-peer mobile computing platform and compared with a centralized client-server approach using the YAWNS synchronization algorithm. Initial results concerning queueing network simulations are also presented. The results of this study suggest that existing distributed simulation algorithms require a significant amount of additional energy compared to a sequential execution. Further, different synchronization algorithms can yield different energy consumption behaviors.\",\"PeriodicalId\":207275,\"journal\":{\"name\":\"2015 IEEE/ACM 19th International Symposium on Distributed Simulation and Real Time Applications (DS-RT)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE/ACM 19th International Symposium on Distributed Simulation and Real Time Applications (DS-RT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DS-RT.2015.32\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE/ACM 19th International Symposium on Distributed Simulation and Real Time Applications (DS-RT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DS-RT.2015.32","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

在高性能和移动计算系统的设计中,功耗和能耗是一个重要的问题,但在并行和分布式仿真的设计中却没有得到广泛的考虑。讨论了这些因素的重要性,并提出了并行和分布式仿真中功率和能量开销的度量。分析了影响同步算法和软件架构能耗的因素。实验研究了著名的Chandy/Misra/Bryant算法在点对点移动计算平台上的能耗,并与使用YAWNS同步算法的集中式客户机-服务器方法进行了比较。给出了排队网络仿真的初步结果。本研究的结果表明,与顺序执行相比,现有的分布式仿真算法需要大量的额外能量。此外,不同的同步算法会产生不同的能耗行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Empirical Study of Energy Consumption in Distributed Simulations
Power and energy consumption are important concerns in the design of high performance and mobile computing systems, but have not been widely considered in the design of parallel and distributed simulations. The importance of these factors is discussed and metrics for power and energy overhead in parallel and distributed simulations are proposed. Factors affecting the energy consumed by synchronization algorithms and software architectures are examined. An experimental study is presented examining energy consumption of the well-known Chandy/Misra/Bryant algorithm executing on a peer-to-peer mobile computing platform and compared with a centralized client-server approach using the YAWNS synchronization algorithm. Initial results concerning queueing network simulations are also presented. The results of this study suggest that existing distributed simulation algorithms require a significant amount of additional energy compared to a sequential execution. Further, different synchronization algorithms can yield different energy consumption behaviors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信