HTS-SMES磁体的优化参数设计

Che Yanbo, Liu Liyun, K. Cheng
{"title":"HTS-SMES磁体的优化参数设计","authors":"Che Yanbo, Liu Liyun, K. Cheng","doi":"10.1109/PESA.2006.343084","DOIUrl":null,"url":null,"abstract":"In order to minimize the volume of HTS magnets and reduce the perpendicular component of magnetic field, two optimal algorithms- iterative algorithm and genetic algorithm are presented to make optimal design of geometry parameter of HTS magnets. The example of optimal design of 500kJ HTS magnet is also given. And the comparison between iterative algorithm and genetic algorithm has done. The iterative algorithm is a optimal method which magnet performance varies with numbers of solenoid coil layer. The magnet geometry parameters should be determined with a rule of heightening the magnet performances and the minimum of magnet volume is found. The improved GA is applied well in magnet optimal design combining Britaina Sheffield University GA toolbox and the optimal results are obtained.","PeriodicalId":402403,"journal":{"name":"2006 2nd International Conference on Power Electronics Systems and Applications","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The Optimal Parameters Design of HTS-SMES Magnets\",\"authors\":\"Che Yanbo, Liu Liyun, K. Cheng\",\"doi\":\"10.1109/PESA.2006.343084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to minimize the volume of HTS magnets and reduce the perpendicular component of magnetic field, two optimal algorithms- iterative algorithm and genetic algorithm are presented to make optimal design of geometry parameter of HTS magnets. The example of optimal design of 500kJ HTS magnet is also given. And the comparison between iterative algorithm and genetic algorithm has done. The iterative algorithm is a optimal method which magnet performance varies with numbers of solenoid coil layer. The magnet geometry parameters should be determined with a rule of heightening the magnet performances and the minimum of magnet volume is found. The improved GA is applied well in magnet optimal design combining Britaina Sheffield University GA toolbox and the optimal results are obtained.\",\"PeriodicalId\":402403,\"journal\":{\"name\":\"2006 2nd International Conference on Power Electronics Systems and Applications\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 2nd International Conference on Power Electronics Systems and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PESA.2006.343084\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 2nd International Conference on Power Electronics Systems and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PESA.2006.343084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

为了使高温超导磁体体积最小,减小磁场垂直分量,提出了迭代算法和遗传算法两种优化算法对高温超导磁体的几何参数进行优化设计。给出了500kJ高温超导磁体的优化设计实例。并对迭代算法和遗传算法进行了比较。迭代算法是一种磁体性能随线圈层数变化的优化方法。磁体几何参数的确定应遵循提高磁体性能的原则,并找到磁体体积的最小值。结合英国谢菲尔德大学遗传算法工具箱,将改进遗传算法很好地应用于磁体优化设计中,获得了最优结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Optimal Parameters Design of HTS-SMES Magnets
In order to minimize the volume of HTS magnets and reduce the perpendicular component of magnetic field, two optimal algorithms- iterative algorithm and genetic algorithm are presented to make optimal design of geometry parameter of HTS magnets. The example of optimal design of 500kJ HTS magnet is also given. And the comparison between iterative algorithm and genetic algorithm has done. The iterative algorithm is a optimal method which magnet performance varies with numbers of solenoid coil layer. The magnet geometry parameters should be determined with a rule of heightening the magnet performances and the minimum of magnet volume is found. The improved GA is applied well in magnet optimal design combining Britaina Sheffield University GA toolbox and the optimal results are obtained.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信