宽范围,人和光照不敏感的头部方向估计

Ying Wu, K. Toyama
{"title":"宽范围,人和光照不敏感的头部方向估计","authors":"Ying Wu, K. Toyama","doi":"10.1109/AFGR.2000.840632","DOIUrl":null,"url":null,"abstract":"We present an algorithm for estimation of head orientation, given cropped images of a subject's head from any viewpoint. Our algorithm handles dramatic changes in illumination, applies to many people without per-user initialization, and covers a wider range (e.g., side and back) of head orientations than previous algorithms. The algorithm builds an ellipsoidal model of the head, where points on the model maintain probabilistic information about surface edge density. To collect data for each point on the model, edge-density features are extracted from hand-annotated training images and projected into the model. Each model point learns a probability density function from the training observations. During pose estimation, features are extracted from input images; then, the maximum a posteriori pose is sought, given the current observation.","PeriodicalId":360065,"journal":{"name":"Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition (Cat. No. PR00580)","volume":"97 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"85","resultStr":"{\"title\":\"Wide-range, person- and illumination-insensitive head orientation estimation\",\"authors\":\"Ying Wu, K. Toyama\",\"doi\":\"10.1109/AFGR.2000.840632\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an algorithm for estimation of head orientation, given cropped images of a subject's head from any viewpoint. Our algorithm handles dramatic changes in illumination, applies to many people without per-user initialization, and covers a wider range (e.g., side and back) of head orientations than previous algorithms. The algorithm builds an ellipsoidal model of the head, where points on the model maintain probabilistic information about surface edge density. To collect data for each point on the model, edge-density features are extracted from hand-annotated training images and projected into the model. Each model point learns a probability density function from the training observations. During pose estimation, features are extracted from input images; then, the maximum a posteriori pose is sought, given the current observation.\",\"PeriodicalId\":360065,\"journal\":{\"name\":\"Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition (Cat. No. PR00580)\",\"volume\":\"97 3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"85\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition (Cat. No. PR00580)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AFGR.2000.840632\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition (Cat. No. PR00580)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AFGR.2000.840632","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 85

摘要

我们提出了一种估计头部方向的算法,给定从任何视点裁剪的受试者头部图像。我们的算法处理光照的巨大变化,适用于许多人而无需每个用户初始化,并且比以前的算法涵盖更广泛的头部方向(例如,侧面和背面)。该算法建立头部的椭球体模型,模型上的点保持表面边缘密度的概率信息。为了收集模型上每个点的数据,从手工标注的训练图像中提取边缘密度特征并投影到模型中。每个模型点从训练观察中学习一个概率密度函数。姿态估计时,从输入图像中提取特征;然后,在给定当前观测值的情况下,寻求最大的后验姿态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Wide-range, person- and illumination-insensitive head orientation estimation
We present an algorithm for estimation of head orientation, given cropped images of a subject's head from any viewpoint. Our algorithm handles dramatic changes in illumination, applies to many people without per-user initialization, and covers a wider range (e.g., side and back) of head orientations than previous algorithms. The algorithm builds an ellipsoidal model of the head, where points on the model maintain probabilistic information about surface edge density. To collect data for each point on the model, edge-density features are extracted from hand-annotated training images and projected into the model. Each model point learns a probability density function from the training observations. During pose estimation, features are extracted from input images; then, the maximum a posteriori pose is sought, given the current observation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信