在分布式百亿亿级系统中使用大数据的挑战

Firuza Tahmazli-Khaligova, Azerbaijan State Oil
{"title":"在分布式百亿亿级系统中使用大数据的挑战","authors":"Firuza Tahmazli-Khaligova, Azerbaijan State Oil","doi":"10.32010/26166127.2020.3.2.245.254","DOIUrl":null,"url":null,"abstract":"In a traditional High Performance Computing system, it is possible to process a huge data volume. The nature of events in classic High Performance computing is static. However, distributed exascale system has a different nature. The processing big data in a distributed exascale system evokes a new challenge. The dynamic and interactive character of a distributed exascale system changes process’s status and system elements. This paper discusses the challenge of the big data attributes: volume, velocity, variety; how they influence distributed exascale system dynamic and interactive nature. While investigating the effect of the dynamic and interactive nature of exascale systems in computing big data, this research suggests the Markov chains model. This model constructs the transition matrix, which identifies system status and memory sharing. It lets us analyze convergence of the two systems. As a result both systems are explored by the influence of each other.","PeriodicalId":275688,"journal":{"name":"Azerbaijan Journal of High Performance Computing","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CHALLENGES OF USING BIG DATA IN DISTRIBUTED EXASCALE SYSTEMS\",\"authors\":\"Firuza Tahmazli-Khaligova, Azerbaijan State Oil\",\"doi\":\"10.32010/26166127.2020.3.2.245.254\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In a traditional High Performance Computing system, it is possible to process a huge data volume. The nature of events in classic High Performance computing is static. However, distributed exascale system has a different nature. The processing big data in a distributed exascale system evokes a new challenge. The dynamic and interactive character of a distributed exascale system changes process’s status and system elements. This paper discusses the challenge of the big data attributes: volume, velocity, variety; how they influence distributed exascale system dynamic and interactive nature. While investigating the effect of the dynamic and interactive nature of exascale systems in computing big data, this research suggests the Markov chains model. This model constructs the transition matrix, which identifies system status and memory sharing. It lets us analyze convergence of the two systems. As a result both systems are explored by the influence of each other.\",\"PeriodicalId\":275688,\"journal\":{\"name\":\"Azerbaijan Journal of High Performance Computing\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Azerbaijan Journal of High Performance Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32010/26166127.2020.3.2.245.254\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Azerbaijan Journal of High Performance Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32010/26166127.2020.3.2.245.254","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在传统的高性能计算系统中,处理海量数据是可能的。在经典的高性能计算中,事件的本质是静态的。然而,分布式百亿亿级系统具有不同的性质。在分布式百亿亿级系统中处理大数据引发了新的挑战。分布式百亿级系统的动态性和交互性改变了进程的状态和系统元素。本文讨论了大数据属性的挑战:量、速度、种类;它们如何影响分布式百亿亿级系统的动态性和交互性。在研究百亿亿级系统在计算大数据方面的动态和交互特性的影响时,本研究提出了马尔可夫链模型。该模型构建了转移矩阵,用于标识系统状态和内存共享。它让我们分析两个系统的收敛性。因此,这两个系统都是通过相互影响来探索的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CHALLENGES OF USING BIG DATA IN DISTRIBUTED EXASCALE SYSTEMS
In a traditional High Performance Computing system, it is possible to process a huge data volume. The nature of events in classic High Performance computing is static. However, distributed exascale system has a different nature. The processing big data in a distributed exascale system evokes a new challenge. The dynamic and interactive character of a distributed exascale system changes process’s status and system elements. This paper discusses the challenge of the big data attributes: volume, velocity, variety; how they influence distributed exascale system dynamic and interactive nature. While investigating the effect of the dynamic and interactive nature of exascale systems in computing big data, this research suggests the Markov chains model. This model constructs the transition matrix, which identifies system status and memory sharing. It lets us analyze convergence of the two systems. As a result both systems are explored by the influence of each other.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信