基于部分优势方向描述符的高效对象索引与检索

Abdessamad Elboushaki, Rachida Hannane, K. Afdel, L. Koutti
{"title":"基于部分优势方向描述符的高效对象索引与检索","authors":"Abdessamad Elboushaki, Rachida Hannane, K. Afdel, L. Koutti","doi":"10.1109/CGIV.2016.62","DOIUrl":null,"url":null,"abstract":"This paper describes a method for object indexing and retrieval using a new feature descriptor called Partial Dominant Orientation Descriptor (PDOD). The extraction process of the PDOD starts by sampling the object into a set of stable and informative key locations using Difference of Gaussian (DoG), so that the retrieval can proceed successfully despite changes in object viewpoint, scale, illumination, and distortion. The proposed descriptor at feature point takes into account the position and partially computes the dominant orientations of other key locations relative to this point, thus, offering a global distinctive and discriminative characterization. The extracted object descriptors are then indexed using Vocabulary Tree, which provides a robust object retrieval system across a substantial range of rotation variance, change in textures and colors, and object deformation. The extensive experiments on KONKLAB public dataset demonstrate that our method outperforms other benchmarks such as SIFT, PCA-SIFT and SURF indexing algorithms.","PeriodicalId":351561,"journal":{"name":"2016 13th International Conference on Computer Graphics, Imaging and Visualization (CGiV)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Efficient Object Indexing and Retrieval Using Partial Dominant Orientation Descriptor\",\"authors\":\"Abdessamad Elboushaki, Rachida Hannane, K. Afdel, L. Koutti\",\"doi\":\"10.1109/CGIV.2016.62\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a method for object indexing and retrieval using a new feature descriptor called Partial Dominant Orientation Descriptor (PDOD). The extraction process of the PDOD starts by sampling the object into a set of stable and informative key locations using Difference of Gaussian (DoG), so that the retrieval can proceed successfully despite changes in object viewpoint, scale, illumination, and distortion. The proposed descriptor at feature point takes into account the position and partially computes the dominant orientations of other key locations relative to this point, thus, offering a global distinctive and discriminative characterization. The extracted object descriptors are then indexed using Vocabulary Tree, which provides a robust object retrieval system across a substantial range of rotation variance, change in textures and colors, and object deformation. The extensive experiments on KONKLAB public dataset demonstrate that our method outperforms other benchmarks such as SIFT, PCA-SIFT and SURF indexing algorithms.\",\"PeriodicalId\":351561,\"journal\":{\"name\":\"2016 13th International Conference on Computer Graphics, Imaging and Visualization (CGiV)\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 13th International Conference on Computer Graphics, Imaging and Visualization (CGiV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CGIV.2016.62\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 13th International Conference on Computer Graphics, Imaging and Visualization (CGiV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CGIV.2016.62","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文描述了一种利用一种新的特征描述符——部分主导方向描述符(PDOD)进行对象索引和检索的方法。PDOD的提取过程首先是利用高斯差分法(DoG)将目标采样到一组稳定且信息丰富的关键位置,以便在目标视点、尺度、光照和失真变化的情况下都能成功地进行检索。所提出的特征点描述符考虑了位置,并部分计算了其他关键位置相对于该点的主导方向,从而提供了全局的独特和判别性表征。然后使用词汇树对提取的对象描述符进行索引,这提供了一个跨越大量旋转变化、纹理和颜色变化以及对象变形的健壮的对象检索系统。在KONKLAB公共数据集上的大量实验表明,我们的方法优于其他基准索引算法,如SIFT, PCA-SIFT和SURF。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient Object Indexing and Retrieval Using Partial Dominant Orientation Descriptor
This paper describes a method for object indexing and retrieval using a new feature descriptor called Partial Dominant Orientation Descriptor (PDOD). The extraction process of the PDOD starts by sampling the object into a set of stable and informative key locations using Difference of Gaussian (DoG), so that the retrieval can proceed successfully despite changes in object viewpoint, scale, illumination, and distortion. The proposed descriptor at feature point takes into account the position and partially computes the dominant orientations of other key locations relative to this point, thus, offering a global distinctive and discriminative characterization. The extracted object descriptors are then indexed using Vocabulary Tree, which provides a robust object retrieval system across a substantial range of rotation variance, change in textures and colors, and object deformation. The extensive experiments on KONKLAB public dataset demonstrate that our method outperforms other benchmarks such as SIFT, PCA-SIFT and SURF indexing algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信