已实现波动估计的Edgeworth展开式的有效性

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Ulrich Hounyo, Bezirgen Veliyev
{"title":"已实现波动估计的Edgeworth展开式的有效性","authors":"Ulrich Hounyo,&nbsp;Bezirgen Veliyev","doi":"10.1111/ectj.12058","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The main contribution of this paper is to establish the formal validity of Edgeworth expansions for realized volatility estimators. First, in the context of no microstructure effects, our results rigorously justify the Edgeworth expansions for realized volatility derived in Gonçalves and Meddahi (2009, <i>Econometrica 77</i>, 283–306). Second, we show that the validity of the Edgeworth expansions for realized volatility might not cover the optimal two-point distribution wild bootstrap proposed by Gonçalves and Meddahi. Then, we propose a new optimal nonlattice distribution, which ensures the second-order correctness of the bootstrap. Third, in the presence of microstructure noise, based on our Edgeworth expansions, we show that the new optimal choice proposed in the absence of noise is still valid in noisy data for the pre-averaged realized volatility estimator proposed by Podolskij and Vetter (2009, <i>Bernoulli 15</i>, 634–658). Finally, we show how confidence intervals for integrated volatility can be constructed using these Edgeworth expansions for noisy data. Our Monte Carlo simulations show that the intervals based on the Edgeworth corrections have improved the finite sample properties relatively to the conventional intervals based on the normal approximation.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2016-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/ectj.12058","citationCount":"10","resultStr":"{\"title\":\"Validity of Edgeworth expansions for realized volatility estimators\",\"authors\":\"Ulrich Hounyo,&nbsp;Bezirgen Veliyev\",\"doi\":\"10.1111/ectj.12058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>The main contribution of this paper is to establish the formal validity of Edgeworth expansions for realized volatility estimators. First, in the context of no microstructure effects, our results rigorously justify the Edgeworth expansions for realized volatility derived in Gonçalves and Meddahi (2009, <i>Econometrica 77</i>, 283–306). Second, we show that the validity of the Edgeworth expansions for realized volatility might not cover the optimal two-point distribution wild bootstrap proposed by Gonçalves and Meddahi. Then, we propose a new optimal nonlattice distribution, which ensures the second-order correctness of the bootstrap. Third, in the presence of microstructure noise, based on our Edgeworth expansions, we show that the new optimal choice proposed in the absence of noise is still valid in noisy data for the pre-averaged realized volatility estimator proposed by Podolskij and Vetter (2009, <i>Bernoulli 15</i>, 634–658). Finally, we show how confidence intervals for integrated volatility can be constructed using these Edgeworth expansions for noisy data. Our Monte Carlo simulations show that the intervals based on the Edgeworth corrections have improved the finite sample properties relatively to the conventional intervals based on the normal approximation.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2016-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1111/ectj.12058\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ectj.12058\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ectj.12058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 10

摘要

本文的主要贡献是建立了已实现波动估计的Edgeworth展开式的形式有效性。首先,在没有微观结构影响的情况下,我们的结果严格证明了gonalves和Meddahi (2009, Econometrica 77, 283-306)推导出的Edgeworth已实现波动率展开。其次,我们证明了Edgeworth展开式对已实现波动率的有效性可能不包括gonalves和Meddahi提出的最优两点分布野生自举。然后,我们提出了一种新的最优非格分布,保证了自举的二阶正确性。第三,在微观结构噪声存在的情况下,基于我们的Edgeworth展开,我们证明了Podolskij和Vetter (2009, Bernoulli 15,634 - 658)提出的预平均实现波动率估计器在没有噪声的情况下提出的新最优选择在噪声数据中仍然有效。最后,我们展示了如何使用这些Edgeworth展开式来构造集成波动率的置信区间。我们的蒙特卡罗模拟表明,相对于基于正态近似的常规区间,基于Edgeworth校正的区间改善了有限样本的性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Validity of Edgeworth expansions for realized volatility estimators

The main contribution of this paper is to establish the formal validity of Edgeworth expansions for realized volatility estimators. First, in the context of no microstructure effects, our results rigorously justify the Edgeworth expansions for realized volatility derived in Gonçalves and Meddahi (2009, Econometrica 77, 283–306). Second, we show that the validity of the Edgeworth expansions for realized volatility might not cover the optimal two-point distribution wild bootstrap proposed by Gonçalves and Meddahi. Then, we propose a new optimal nonlattice distribution, which ensures the second-order correctness of the bootstrap. Third, in the presence of microstructure noise, based on our Edgeworth expansions, we show that the new optimal choice proposed in the absence of noise is still valid in noisy data for the pre-averaged realized volatility estimator proposed by Podolskij and Vetter (2009, Bernoulli 15, 634–658). Finally, we show how confidence intervals for integrated volatility can be constructed using these Edgeworth expansions for noisy data. Our Monte Carlo simulations show that the intervals based on the Edgeworth corrections have improved the finite sample properties relatively to the conventional intervals based on the normal approximation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信