利用人工蜂群算法优化合成多层雷达吸波材料

A. Toktas, Deniz Ustun, E. Yiğit, K. Sabanci, M. Tekbaş
{"title":"利用人工蜂群算法优化合成多层雷达吸波材料","authors":"A. Toktas, Deniz Ustun, E. Yiğit, K. Sabanci, M. Tekbaş","doi":"10.1109/DIPED.2018.8543261","DOIUrl":null,"url":null,"abstract":"Radar absorbing material (RAM) is crucial for military vehicles that desired to be invisible to the radar systems. A vehicle coated with optimally designed multilayer RAM (MRAM) can be successfully hidden from the radar systems. At this point, optimum design of a MRAM in terms of electrical and geometric variables gains importance. In this study, variables in design of MRAM with various numbers of layers are optimally determined using artificial bee colony (ABC) which is the one of latest natural inspired algorithm. The MRAMs are considered to operate at the frequency range of 2-8 GHz and 1-20 GHz at normal incident. In optimization, a predefined material set including electrical variables existing in the literature is utilized for making a fairly comparison. The electrical variables and thickness of each layer are optimized for the objective of minimizing the reflectivity for a limited total thickness. The optimization is conducted through the formulation of impedance equivalent model in order to form the objective function. The formulation is verified through the designed MRAMs via a full wave electromagnetic solver. Moreover, a comparison is studied through the simulated MRAMs proposed in this study and the suggested ones designed using different algorithms. The proposed designs have the lest total thickness than the other ones as well as almost the same reflectivity with the best one in the literature.","PeriodicalId":146873,"journal":{"name":"2018 XXIIIrd International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory (DIPED)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Optimally Synthesizing Multilayer Radar Absorbing Material (RAM) Using Artificial Bee Colony Algorithm\",\"authors\":\"A. Toktas, Deniz Ustun, E. Yiğit, K. Sabanci, M. Tekbaş\",\"doi\":\"10.1109/DIPED.2018.8543261\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Radar absorbing material (RAM) is crucial for military vehicles that desired to be invisible to the radar systems. A vehicle coated with optimally designed multilayer RAM (MRAM) can be successfully hidden from the radar systems. At this point, optimum design of a MRAM in terms of electrical and geometric variables gains importance. In this study, variables in design of MRAM with various numbers of layers are optimally determined using artificial bee colony (ABC) which is the one of latest natural inspired algorithm. The MRAMs are considered to operate at the frequency range of 2-8 GHz and 1-20 GHz at normal incident. In optimization, a predefined material set including electrical variables existing in the literature is utilized for making a fairly comparison. The electrical variables and thickness of each layer are optimized for the objective of minimizing the reflectivity for a limited total thickness. The optimization is conducted through the formulation of impedance equivalent model in order to form the objective function. The formulation is verified through the designed MRAMs via a full wave electromagnetic solver. Moreover, a comparison is studied through the simulated MRAMs proposed in this study and the suggested ones designed using different algorithms. The proposed designs have the lest total thickness than the other ones as well as almost the same reflectivity with the best one in the literature.\",\"PeriodicalId\":146873,\"journal\":{\"name\":\"2018 XXIIIrd International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory (DIPED)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 XXIIIrd International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory (DIPED)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DIPED.2018.8543261\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 XXIIIrd International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory (DIPED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DIPED.2018.8543261","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

雷达吸波材料(RAM)对于军用车辆来说是至关重要的,因为军用车辆希望对雷达系统不可见。采用优化设计的多层随机存储器(MRAM)涂层的车辆可以成功地隐藏在雷达系统之外。在这一点上,从电气和几何变量方面对MRAM进行优化设计变得非常重要。本文采用最新的自然启发算法——人工蜂群(artificial bee colony, ABC),对不同层数的MRAM设计变量进行了优化确定。mram被认为在正常入射时工作在2-8 GHz和1-20 GHz的频率范围内。在优化中,利用一个预定义的材料集,包括文献中存在的电变量,进行公平的比较。为了在有限的总厚度下最小化反射率,对每层的电变量和厚度进行了优化。通过建立阻抗等效模型进行优化,形成目标函数。该公式通过设计的mram通过全波电磁求解器进行验证。并将本文提出的模拟mram与采用不同算法设计的建议mram进行了比较。所提出的设计比其他设计具有最小的总厚度和与文献中最好的设计几乎相同的反射率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimally Synthesizing Multilayer Radar Absorbing Material (RAM) Using Artificial Bee Colony Algorithm
Radar absorbing material (RAM) is crucial for military vehicles that desired to be invisible to the radar systems. A vehicle coated with optimally designed multilayer RAM (MRAM) can be successfully hidden from the radar systems. At this point, optimum design of a MRAM in terms of electrical and geometric variables gains importance. In this study, variables in design of MRAM with various numbers of layers are optimally determined using artificial bee colony (ABC) which is the one of latest natural inspired algorithm. The MRAMs are considered to operate at the frequency range of 2-8 GHz and 1-20 GHz at normal incident. In optimization, a predefined material set including electrical variables existing in the literature is utilized for making a fairly comparison. The electrical variables and thickness of each layer are optimized for the objective of minimizing the reflectivity for a limited total thickness. The optimization is conducted through the formulation of impedance equivalent model in order to form the objective function. The formulation is verified through the designed MRAMs via a full wave electromagnetic solver. Moreover, a comparison is studied through the simulated MRAMs proposed in this study and the suggested ones designed using different algorithms. The proposed designs have the lest total thickness than the other ones as well as almost the same reflectivity with the best one in the literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信