基于多目标遗传优化的通信网络拓扑设计

R. Kumar, P. P. Parida, Mohit Gupta
{"title":"基于多目标遗传优化的通信网络拓扑设计","authors":"R. Kumar, P. P. Parida, Mohit Gupta","doi":"10.1109/CEC.2002.1006272","DOIUrl":null,"url":null,"abstract":"Designing communication networks is a complex, multi-constraint and multi-criterion optimization problem. We present a multi-objective genetic optimization approach to setting up a network while simultaneously minimizing network delays and installation costs subject to reliability and flow constraints. In this paper, we use a Pareto-converging genetic algorithm, present results for two test networks and compare results with another heuristic method.","PeriodicalId":184547,"journal":{"name":"Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"46","resultStr":"{\"title\":\"Topological design of communication networks using multiobjective genetic optimization\",\"authors\":\"R. Kumar, P. P. Parida, Mohit Gupta\",\"doi\":\"10.1109/CEC.2002.1006272\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Designing communication networks is a complex, multi-constraint and multi-criterion optimization problem. We present a multi-objective genetic optimization approach to setting up a network while simultaneously minimizing network delays and installation costs subject to reliability and flow constraints. In this paper, we use a Pareto-converging genetic algorithm, present results for two test networks and compare results with another heuristic method.\",\"PeriodicalId\":184547,\"journal\":{\"name\":\"Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"46\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2002.1006272\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2002.1006272","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 46

摘要

通信网络设计是一个复杂的、多约束、多准则的优化问题。我们提出了一种多目标遗传优化方法来建立网络,同时最小化受可靠性和流量约束的网络延迟和安装成本。本文使用pareto收敛遗传算法,给出了两个测试网络的结果,并与另一种启发式方法的结果进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Topological design of communication networks using multiobjective genetic optimization
Designing communication networks is a complex, multi-constraint and multi-criterion optimization problem. We present a multi-objective genetic optimization approach to setting up a network while simultaneously minimizing network delays and installation costs subject to reliability and flow constraints. In this paper, we use a Pareto-converging genetic algorithm, present results for two test networks and compare results with another heuristic method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信