相位:一种基于随机森林的自动调制分类系统

Kostis Triantafyllakis, M. Surligas, George Vardakis, Stefanos Papadakis
{"title":"相位:一种基于随机森林的自动调制分类系统","authors":"Kostis Triantafyllakis, M. Surligas, George Vardakis, Stefanos Papadakis","doi":"10.1109/DySPAN.2017.7920749","DOIUrl":null,"url":null,"abstract":"We propose an architecture that incorporates an automatic modulation classification (AMC) mechanism, assisted by Random Forest machine learning (ML) classifiers. Using this architecture we are able to distinguish a variety of digital and analog modulation schemes under various SNR environments.","PeriodicalId":221877,"journal":{"name":"2017 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Phasma: An automatic modulation classification system based on Random Forest\",\"authors\":\"Kostis Triantafyllakis, M. Surligas, George Vardakis, Stefanos Papadakis\",\"doi\":\"10.1109/DySPAN.2017.7920749\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose an architecture that incorporates an automatic modulation classification (AMC) mechanism, assisted by Random Forest machine learning (ML) classifiers. Using this architecture we are able to distinguish a variety of digital and analog modulation schemes under various SNR environments.\",\"PeriodicalId\":221877,\"journal\":{\"name\":\"2017 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DySPAN.2017.7920749\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DySPAN.2017.7920749","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

我们提出了一个包含自动调制分类(AMC)机制的架构,并辅以随机森林机器学习(ML)分类器。使用这种架构,我们能够在各种信噪比环境下区分各种数字和模拟调制方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Phasma: An automatic modulation classification system based on Random Forest
We propose an architecture that incorporates an automatic modulation classification (AMC) mechanism, assisted by Random Forest machine learning (ML) classifiers. Using this architecture we are able to distinguish a variety of digital and analog modulation schemes under various SNR environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信