容错开关磁阻电机特性的神经遗传学模型

L. Belfore, A. Arkadan
{"title":"容错开关磁阻电机特性的神经遗传学模型","authors":"L. Belfore, A. Arkadan","doi":"10.1109/IEMDC.1997.604212","DOIUrl":null,"url":null,"abstract":"This paper examines the feasibility of using artificial neural networks (ANNs) and genetic algorithms (GAs) to develop discrete time dynamic models for fault free and faulted switched reluctance motor (SRM) drive systems. The results of using the ANN GA based (neurogenetic) model to predict the performance characteristics of prototype SRM drive motor under normal and abnormal operating conditions, are presented and verified by comparison to test data.","PeriodicalId":176640,"journal":{"name":"1997 IEEE International Electric Machines and Drives Conference Record","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Neurogenetic models for the characterization of fault tolerant switched reluctance motors\",\"authors\":\"L. Belfore, A. Arkadan\",\"doi\":\"10.1109/IEMDC.1997.604212\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper examines the feasibility of using artificial neural networks (ANNs) and genetic algorithms (GAs) to develop discrete time dynamic models for fault free and faulted switched reluctance motor (SRM) drive systems. The results of using the ANN GA based (neurogenetic) model to predict the performance characteristics of prototype SRM drive motor under normal and abnormal operating conditions, are presented and verified by comparison to test data.\",\"PeriodicalId\":176640,\"journal\":{\"name\":\"1997 IEEE International Electric Machines and Drives Conference Record\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1997 IEEE International Electric Machines and Drives Conference Record\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEMDC.1997.604212\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1997 IEEE International Electric Machines and Drives Conference Record","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEMDC.1997.604212","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文探讨了利用人工神经网络(ann)和遗传算法(GAs)建立无故障和故障开关磁阻电机(SRM)驱动系统离散时间动态模型的可行性。采用基于神经遗传算法的神经遗传模型预测了SRM驱动电机在正常和异常工况下的性能特性,并与试验数据进行了对比验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neurogenetic models for the characterization of fault tolerant switched reluctance motors
This paper examines the feasibility of using artificial neural networks (ANNs) and genetic algorithms (GAs) to develop discrete time dynamic models for fault free and faulted switched reluctance motor (SRM) drive systems. The results of using the ANN GA based (neurogenetic) model to predict the performance characteristics of prototype SRM drive motor under normal and abnormal operating conditions, are presented and verified by comparison to test data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信