捕捉飞行时间的数据与信心

M. Reynolds, J. Dobos, Leto Peel, T. Weyrich, G. Brostow
{"title":"捕捉飞行时间的数据与信心","authors":"M. Reynolds, J. Dobos, Leto Peel, T. Weyrich, G. Brostow","doi":"10.1109/CVPR.2011.5995550","DOIUrl":null,"url":null,"abstract":"Time-of-Flight cameras provide high-frame-rate depth measurements within a limited range of distances. These readings can be extremely noisy and display unique errors, for instance, where scenes contain depth discontinuities or materials with low infrared reflectivity. Previous works have treated the amplitude of each Time-of-Flight sample as a measure of confidence. In this paper, we demonstrate the shortcomings of this common lone heuristic, and propose an improved per-pixel confidence measure using a Random Forest regressor trained with real-world data. Using an industrial laser scanner for ground truth acquisition, we evaluate our technique on data from two different Time-of-Flight cameras1. We argue that an improved confidence measure leads to superior reconstructions in subsequent steps of traditional scan processing pipelines. At the same time, data with confidence reduces the need for point cloud smoothing and median filtering.","PeriodicalId":445398,"journal":{"name":"CVPR 2011","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"118","resultStr":"{\"title\":\"Capturing Time-of-Flight data with confidence\",\"authors\":\"M. Reynolds, J. Dobos, Leto Peel, T. Weyrich, G. Brostow\",\"doi\":\"10.1109/CVPR.2011.5995550\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Time-of-Flight cameras provide high-frame-rate depth measurements within a limited range of distances. These readings can be extremely noisy and display unique errors, for instance, where scenes contain depth discontinuities or materials with low infrared reflectivity. Previous works have treated the amplitude of each Time-of-Flight sample as a measure of confidence. In this paper, we demonstrate the shortcomings of this common lone heuristic, and propose an improved per-pixel confidence measure using a Random Forest regressor trained with real-world data. Using an industrial laser scanner for ground truth acquisition, we evaluate our technique on data from two different Time-of-Flight cameras1. We argue that an improved confidence measure leads to superior reconstructions in subsequent steps of traditional scan processing pipelines. At the same time, data with confidence reduces the need for point cloud smoothing and median filtering.\",\"PeriodicalId\":445398,\"journal\":{\"name\":\"CVPR 2011\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"118\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CVPR 2011\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2011.5995550\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CVPR 2011","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2011.5995550","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 118

摘要

飞行时间相机在有限的距离范围内提供高帧率深度测量。这些读数可能非常嘈杂,并显示独特的错误,例如,场景中包含深度不连续或材料具有低红外反射率。以前的工作将每个飞行时间样本的振幅作为置信度的度量。在本文中,我们展示了这种常见的单独启发式的缺点,并提出了一种改进的逐像素置信度度量,使用随机森林回归器训练真实世界的数据。使用工业激光扫描仪进行地面真值采集,我们对来自两个不同飞行时间相机的数据进行了评估。我们认为,改进的置信度可以在传统扫描处理流程的后续步骤中获得更好的重建效果。同时,具有置信度的数据减少了对点云平滑和中值滤波的需要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Capturing Time-of-Flight data with confidence
Time-of-Flight cameras provide high-frame-rate depth measurements within a limited range of distances. These readings can be extremely noisy and display unique errors, for instance, where scenes contain depth discontinuities or materials with low infrared reflectivity. Previous works have treated the amplitude of each Time-of-Flight sample as a measure of confidence. In this paper, we demonstrate the shortcomings of this common lone heuristic, and propose an improved per-pixel confidence measure using a Random Forest regressor trained with real-world data. Using an industrial laser scanner for ground truth acquisition, we evaluate our technique on data from two different Time-of-Flight cameras1. We argue that an improved confidence measure leads to superior reconstructions in subsequent steps of traditional scan processing pipelines. At the same time, data with confidence reduces the need for point cloud smoothing and median filtering.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信